Jziz‘:au.g S ‘gn

it { VN

- 1
@” !
. mu.@ P m . m" K R A R Gan AT

(e W

,,~;a4‘ N B

b—=
H b -

NASA Technical Memoraridum 78485 .

On improving the lterative
Convergence Properties of an :
Implicit Approximate-Factorization

Finite Difference Algorithm

Jean-Antoine Desideri, J. L. Steger
and J. C. Tannehill

{NASA-TN=-78495)

ON INPROVINS THE ITERATIVE

CCNVERGENCE PROPFRTIZS OF AN IJFLICIT
PPPROXINATE-FACTORIZATION FINiTZ DIPFERENCE

ALGORITHM (NASA)

June 1978

NASA

National Aeronautics and
Space Administration

i) -

121 p HC MNo/¥F AN
CSCL 12A G3/64

N78-26795

Unclas
217900

O ew g e ummmw



NASA Technical Memorandum 78495

On Improving the lterative
Convergence Properties of an
Implicit Approximate-Factorization
Finite Difference Algorithm

s

Jean-Antoine Desideri, lowa State University, Ames, lowa
J. L. Steger, A mes Research Center, Mcfiett Field, California
J. C. Tannehill, lowa State University, Ames, lowa

NASA

Natonal Aeronautics and
Space Administration

Ames Research Center
Moftett Field Cahfornia 94035

PR TV, W WU T e N B - T 4 Y e ek -t e e - . . o . —_ .
- - v . .



i1

TABLE OF CONTENTS

Page

{

1. INTRODUCTION 1
A. Overview 1 !

B. Governing Equations and Numerical Algorithm 2

. I1, STABILITY ANALYSIS AND APPLICATIONS 6

A. Generalities 6
' B. The Case of a Scalar Linear Equation 10 [

1. feneralities 10
2. The case of periodic boundary conditions 13 §
| 3. The case of specified boundarv Jata 20 j
C. Application: Scguence of Parameters 26 i
I11. NUMERICAL EXPERIMENTATION ON STEADY-STATE CONVERGENCE 33 i
A. Model Problem 33 g
!
B. Results 35 :
IV. ON THE EFFECT OF SPACIAL VARIATTON OF THE JACOBIAN MATRICES 49 j
A. Analyais 49 i
z; B. Numerical Experiments on Scalar Model Equaticns with 3
t Variable Coefficients 54 \i
E . C. Further Conments 65 ‘ié
. V. CONCLUSION 68 .
Vi. REFERENCES 70 g
VII. ACKNOWLEDGMENTS 72 :

g
’i‘l
%
!
%




.b

o RTINS T U At~

VIII.

IX.

X).

XIl.

XII1.

XIv.

Pokimen ofusy el e

il

APPENDIX A: HMATRIX FORM OF THE FINITE-DIFFFERENCF FQUATION
FOR THE CASE OF A SCALAR DIFFERENTIAL EQUATION

A. Some Background on Kronecker Products and Sums

B. Application to the Finite-Difference Equation

APPENDIX B: EIGENSYSTEMS Of TRIDIAGONAL MATRICES

APPENDIX C: STABILITY CONDITION FOR PERIODIC BOUNDARY
CONDITIONS AND SECOND-ORDER SMOOTHING

APPENDIX D: STABILITY CONDITION FOR PERIODIC BOUNDARY

CONDITIONS AND FOURTH-ORDER SMOOTHING

APPENDIX E: EFFECTIVE ETGENVALUES OF THE SMOOTHING OPERATORS

AT LARGE COURANT NUMBERS

APVENDIX F: STABILITY CONDITION FOR SPECIFIED BOUNDARY
DATA AND SMALL COURANT NUMBERS

A. Second-Order Smoothing

B. Fourth-Order Smoothing

APPENDIX G: OF THE EIGENVALUES OF THE MATRIX T

73

73

74

77

82

86

93

98

99

102

104



¥

-

1. TINTRODUCTION
A. Overview

Time-accurate implicit finite-difference schemes for the Fuler and com-
pretiible Navier-Stokes equations are used to obtain steady as well as
unsteady {low-field solutions. 1If only a steady-state solution is required,
iterative paths that are not restricted to be time accurate can be sought
to uaccelerate steady-state convergence. This 18 the concept of relaxation
which has been used successfully for inviscid transonic flow.

The current time accurate implicit algorithms [1-6] for the Euler or
compressible Navier-Stokes equations rely on approximate factorization or
alternating direction (ADI) techniques to achieve computational efficiency.
The same technique is the basis of many of the most successful relaxation
procedures (e.g., [7-11]). As a consequence, it would seem that implicit
algorithms developed for time accurate flow simulation could be adapted
into successful relaxation procedures, and indeed this is the case.

In this work, the iteretive convergence properties of a currently
popular approximate-factorization {mplicit finite-difference algorithm are
studied both analytically and experimentally. These studies are limited to
the two-dimensional Euler equations, with emphasis on transonic flow compu-
tations. However, the major results are expected to apply to those flows
that are joverned by the complete Navier-Stokes equations, but in which the
convection phenomene :till play the most important role in the determination
of the esiential features of the numerical algorithm, at leas* from the

satandpoint of stability,
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To achieve better numerical efficiency, large time-steps are often
needed for problems that are unduly stiff. To permit this, modifications
to the algorithm are made (in Section IB) in an attempt to enhance its sta-
bility properties. The success of this attempt ir supported by a theoreti-
cal analysis (Chapter I1), and a numerical experimentation (Chapter 111),
With achicvement of stable large time-steps permitted, another technique is
also employed to improve the iterative convergence rate. This technique,
which consists of using a cyclic sequence of time-steps, appears promising
after examination of o simple model problem (see Section TIC). In
Chapter IlI, a varlety of numerical experiments are conducted on the modi-
fied algorithm and the use of a sequence of time-steps.

Finally, 1t was observed in the course of this work, that the numerical
algorithm could be subject to a particular form of instability due to
variable coefficients. A discussion on this topic is presented in
Chapter IV.

In Section IB, which follows, the definition of the base algorithm 1s

rec.alled, and a modified algorithm 18 proposed.

B. Governing Equations and Numerical Algorichm
The conservative form of the Euler equations in Cartesian coordinates

and for two-dimensionnl flow is given byv;

g + o E + 3 F =0 (M
where
A} u nv
pu put + p Y uv
4 - é - - .
q ov |t 10 v , and F ove + p
e u(e + p) v(e + p)
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Implicit finite-difference schemes deveioped for the Euler equations in
nonconservative [1] or conservative fc m [2-3] share the essential features
of central spacial differencing (for stability) and alternating-direction-
like structure {(for efficlency). The conservative differencing scheme is
used here for transonic flow applications because it correctly captures
shock waves, but the results obtained here should apply to the nonconserva-
tive differencing scheme as well.

The implicit finite~diffe-encing scheme can be represented as

(1 + h6, A" (1 + 18, BH @™ - M)

» w >
- -At(S,E" + ayf“) - el (V807 + (Vy8)718" (@)
where ¥
6y and éy are central three-point difference operators

A, B are the 4»4 Jacobian matricaes EE] ’ iF
39 ] * |3

h = ¢ At, with ® = 1 or 1/2 for Euler implicit, or trapezoidal time
differencinyg

(VA)"'&n ere fourth-order numerical dissipation terms with coefficient
te = 1/16 $

" = (@) with - (§ - 1A d . (k - 1)A

q qjk W Xy J x and vy, - y.

The operators & and VA  are understood to operate on any product of terms

that follow to their right and, for example,

nn+l

5,879 n ] n m+1

il Bjok'lqjok"

L L e sn ’n :
(Thad Q= Qg p j m 49y o ¥ 6ay, - day,, Ay i

= (B

y 3. k194, k4 )/ (2av)

Central difference operators are used becausec A and B usually have

both posit jve and negutive eigenvalues, for one sign o! vhich the algorichm
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is always unstable for only forward or only backwiard spacial differencing.
The fourth~order numerical dissipation terms provide damping and arc needed
to control what 1s usually referred to as nonlinear instability. They also
serve to smooth out small numerical inconsistencies especially due to
slightly improper bouncary conditions.

Although the basic differencing is atable for linear problems without
disslpation added, the scheme given by Equation (2) has to be modified if
the dissipation is to be allowed to increase with the use of large values
of At. More precisely, the dissipation coefficient ¢e should vary
directly as At to prevent nonlinear instability and to maintain steady-
state consistency. It is only in this way that the steady-state solution
can be independent of At, However, because the numerical dissipation is
added explicitly, use of fa 1/16 would in itself cause linear instabil-
1ty. Consequently, €, cannot be maintained proportional to At and very
large values of At cannot be taken without effectively reducing the amount
of andded numerical dissipation. In many flow-field problems, lack of suffi-
cient numerical dissipation can cause instability,

Adding numerical dissipation implicitly would allow te tO assume any
positive value, and in particular, te could vary with At. Unfortunately,
use of fourth-order {uplicit numerical dissipation requires the {nversion
of block pentadiagonal matrices which are twice as coatly as the block tri-
diaponal inversions required for Equation (Z). Use of second-order smoothing
allows tridiagonal structure but is inaccurate. However one expects that
lear restricted values of €a could be obtained if a proper portion of the

numerical dissipation that fits within the tridiagonal structure i8 treated

'i‘m AR AIIG | KA S st Somsniet
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implicitly. This concept ultimately leads to the following modification of

the numerical algorithm

n n n+l -n
(I + hé,A” - egV,8,)(1 + h6,s5" - € VAN(Q - q)

= -8t (5 E" + 6,7 - e [(V,8 07 + (VA)21Q" (3

which has now been implemented in recent flow-field codes [5,6].
In the folloving chapters, this modified algorithm is analvzed and com-
' parcd to the base difterencing scheme, Fquation (2), from the standpoint of

iterative convergence.

%
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IT. STABILITY ANALYSIS AND APFLICATIONS

The efficiency of a finite~difference algorithm for time-marching
problems depends crucielly on the stability limitations this algorithm is
subject to. In Section TIA, the basic notions related to stability are

recalled, In Section ITB, stability bounds are derived for the case where

the numerical algoritim is applied to a scalar, linear, partial-differential

equation, with constant coefficients and linear boundary conditions. Appli-

cations of the results of this analysis are considered in Section TIC.

A. Generalities

The importance of the stability condition 1is reviewed here for finite-
differencc methods in general, and for relaxation techniques in particular.

Recall that a numerical algorithm, for an initial-value problem, is
said to be stable when, for arbitrary bounded starting solution u = u(0),
the solution u" produced by n applications of this algorithm remains
bounded as n tends to infinity. This limit may result from considering
either one of two limiting processes which are: (1) a mesh refinement
process, and (2) a search for a steady-state solution.

In the case of a mesh refinement process, one evaluates a sequence of
solutions u"l (1 =1,2, . . .) which are all candidate approximations to
the exact solution u(tf) of the initial-value problem, for some fixed
final time te. At the ith step in this process, ny applications of the
algerithm are made, with initfal solution u° = u(0) and using a time-step
Aty = tg¢/ny which tends to zero as 1 tends to infinity. P. D. Lax (see
Richtmyer and Morton [12]) has shown that given a properly posed iaitial-

value problem and a finite-difference approximation to it that sati{sfies

oM ridea theet e
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the conaietency condition, the stability condition is the necessary and

suft tcient condition tor convergence. Here the convergence 1s the oue oi

tends to zero);

tends to infinity (or Aty

- u((f)l to zerc as |

that is, the convergence of the finite-difference integral operator to the

exact integral operator over a fixed domain {n the limit of a mesh

ref inement .
In the case of the search for a steady-state solution, the time-step

tends to infinity because the final time t; = n At

A\t mavy be fixed and n

should do so. There the stability condition is not safficient for (steady-

state) convergeance, and one usuallv relies on numerical evidence to demon-

strate the latter,

For both cases, violation of the stability condition produces an ampli-
ficution of the varfous forme of errors that are present in the numerical

truncation errors (due to inexact differentials),

solutfen., These are:

round-off errors (due to truncaced arithmetfcs), errors due to sligh'iv

fncons{stent boundarv conditions, ete. For linear (constant coefficient)

algorithm., the growth of the errors, {f ic happens, i{s geuerallv exponen-

tial with n (sometime's polvnomial, or a combination of the two), so that

the numevical solutlon verv rapldly becomes totallv meaningless whenever

computable. However, most schemes are atable when operating with a time-

step that does not exceed a certain maximum allowable valne AMtpax Which

unfortunately decreases with the mesh spacing parameters Ax and Av, and

alsc depends (for nonlinear schemes) on the solution u" {tself. For

exarple, for usual explicit alporithms (e.r., [13]) applied to the Fuler
ecquit tons, stabtlity {8 enfe  od by the well-known Courant, Friedrichs,

Lewv (CFL) condition [14]. T. 8 conditfon considerably reduces the

J . 1
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efficiency of these algorithms when used as relaxation techniques. This 13
particularly true when, for an accurate resolution, a very fine mesh is
required. On their part, implicit algorithms usually have the favorable
property of being unconditionally stable, at least for some simple test
equations. In practice, such unconditionality is rarely truly achieved,
but time-steps that are significantly larger than those permitted by the
CFL condition can be successfully used (see Chapter III)., This is the
reason that motivated the choice of an implicit algorithm in this work on
relaxation.

These considerations suffice to explain the importance of stability for
finite-difference time-marching techniques. However, when such a technique
is employed as an artifice to solve a problem where time does not appear,
one wight want to relate the stability condition to the assumption of a
(known) theorem dealing with relaxation techniques per se. This 1s the
"contraction-mapping theorem”" (see, e.g., [15]) which can be stated as
follows: Given a closed domain D 1in a complete normed vector space (e.g.,
R™). and an application f, with domain D and range included in D, which
is contracting in the sense that

Yu,v €D , FE(u) - £ < pllu ~ vl (4)
for some real positive number p ~ 1, the following statements are crue:
(1) the equation u = f(u) has a unique solution u* (on D), and (2) for
any u1 € D, the sequence u® given by u® = gl and u“+1 = f(u")
(n=0,1,2, . . .) 18 well defined and converges to u*. Also, the fol-
lowing bound holds:

u -
lun - u*' s '].——'J:—';' 'un - un 1' (5)

P P . e T L
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When a finite-di{tfererce method is uscd as a relaxation technique, the
iterative formula can indeed be writicen as

e ™ (6)

where f(u) can enerall. be cast into the following quasi~linear form:

f(u) = L(u)u + b(u) M
where u® = u(nit) is the (m-dimensional) solution-vectcr., L(u) is an
mym coefficient matrix and b(u) is an m-vector generally resulting from
the application of boundaryv counditions. The unfortunate dependence on u
of L(u) and b(u) renders the analysis very difficult in verv general cases.
For this reason, one is generally satisfied when successtul in proving
stability o) the algorithm in the special case where the coefficients are
fro-en to some, perhaps arbitrarv but fixed, nominal values L and b. Then,
the bouudedness of u", for arbitrary u°, s equivalent to the following
stahility condition:

1y .1 (8)
‘or some norm. Cleariv, this condition {8 a weak form of the assumption
that f 18 contracting of the cited theorem (see Fquation (4)).
If the matrix L can be diagonalized, {t is convenient to use the
spectral norm for which Equation (8) reduces to:
~(L) 1 (C))

Matrices that are involved in finite-difference equations are usuallv bard
matrices. Despite this simplification, the determination of the eigensvstem
of L is usually difticult. For this reason, most analvses apply to simple
test caser, such as the one of a scalar, linear partial-differeatial equa-

tion, with coefficients assumed constant in both time and space, and for

som: simple boundary conditions (generallv periodic rometimes fixed, rarelv

.
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more sophisticated). In Section IIB, the stabili<y analysis is developed
for this simple case. Cuch analysis can be invalidated by either ono of the
following realities:

1. Dimensionality

2. Nonlinearity or time-dependence

3. Spacial dependence of the coefficients matrices

4. Complex bouncary condition procedures

In Chapt.- IV, a form of instability due to spacial variation of the

Jacobian matrices of the Euler equations (item 3) is discussed.
B. The Case of a Scalar Linear Equation

1. Generalities

If the Jacobian matrices A and B of the Euler equations commuted and
were constant, the goveriuing equations could be diagonalized into four
scalar equations of the form:

g + au, + buy =0 (10)

which i1s the first-order wave equation in two dimensions. Although these
hypotheses are not satisfied by the Euler equations, the case of applica-
tion of the numericai algorithm to Equation (10) is expected to reveal the
esscntial properties of this algorithm. For this case, if linear boundary

conditions! are assumcd, it 18 convenient to rewrite the finite-difference

equation (Equation (3)) in the following matrix form (derived in Appendix A):

A @A, W™ -0 = (B @1y + 1, ©B)" a1

IThe analysis will be made for perlodic or specified boundary
conditions.

-
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where the foliowing definitions have bean used

A, = 1+ v C b

X x xx by

B, o= v (. ¢ fen;

X X' X

UX - (2‘\)()“)( = Tr{d(-1,0,1)

: an
Dy = VAL = Trid(-1,2,-1)
D; =Dy or D; . for second or fourth-order smoothing
Ve ™ adt/(2a8) half of « Courant number )
and Ay. Ry, Cy. D, D;. and vy are defined {n a similar wayv. For a mesh

contafning I K {nter for grid points, x-subscripted and  y-subscripted
mat? lcex are of dimens{on JxJ and KxK, respectively. 1t is assumed that
the J~K components of the solution vector u® are conventionally ordered
as iollown:

n noou n n n n n n n .t
e (u11.u‘3.. R I L AR R L AREICEEEPIIN (RN PUPEPEPE ) FER Y S Jugg) (13

where as usual - u(xi. Vi t“\. it {s also assumed that this vector

D
ik
has teen defined {n such a wav that W' = 0 {8 the solutfon of the differ-
ence equat lon thet one hopea to attain at the ateadv state. The homogenefty
of Fquation (11) reaults tfrom this {mplicit conventfon. Flaallyv, detfint-
tions and eigensvatems of tridiagonal mativices for vartous boundary condi-
tions are given in Appeadix B,

Inverting tquation (11) yields the new equation:

+1
un - " (14

|
3
3

dere Lo - IR AT - AT @Al

et X and ¥ be two nonafngular matrices of sfzes JIsF and K K

reapect {vely, to be chosen later. Upon defining

- —
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V= x®Y) IW" (15)

and making various applications of Equations (A3) through (AS5) (see

Appendix A), Equation (14) becomes:

in which, for example,

VLR W (16)
where the matrix A, which is defined by
A= XOY)ILX ©Y)
~1,-1 5 v-1a=ly - y~1a-! ~15-1
= I-xagtBx @y ally - xTlallx @Y AG'BY
AT LR A”l _ i-1 © i=1§
=1 A'B, ©A A O K B, 7
A, = NTIAX
* (18)
By = X7!B¥

is8 similar to the matrix L.

Observe that for the simple case where no smoothing is applied

(ee =€y = 0), the matrix A can be reduced to a diagonal form. For this,

it suffices to choose X and Y to diagonalize the matrices Cx and Cv'

Now, considering the yeneral case where ¢ _ and €4 are nonzero, and assum-

€

ing the matrix A diagonalizable, an inspection of Equation (14) or (16)

indicates that the solution u" (alternately vn) is bounded for arbitrary

starting solution, if and only if the spectral radius of the matrix L

(alternately A) is less than or equal to unity. T. is desired to determine

the conditions on ¢

e

v £y and v

under which this requirement is met for

arbitrary values of the parameters Yy and vy that control the time-step

At ("unconditional stability").

some assumed bount »

At
’

conditions,

This 18 done 1in the next two sections for

e —— e

—
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The case of periodic boundary conditions {s of interest because it
permits the development of a rigorous analysis of a pure inftfal-value
problem. However, as one can anticipate bv observing that the exact solu-
tion for this problem {8 given by

u(x,y,t) = u(x - at, y -~ bt, 0) (19)
it does not provide a satisfactory test case for studving steady-state con-
. vergence. Neverthelens, the analysis of this case will be performed here
as a1 guideline for the treatment of another case.

When periodiclity conditions arve applied, it {s convenient to assume

that u

ik
J and k and that

i{s defined for all (positive or negative) integer values of

n
Y4, k+uK

~

u;k (v and u 1integers) 207

The forward and backward shift operators (acting on either ! or k) are then
inverse of one another (see Appendix A); so are their matrix representations
which thus, can bhe simultanesusly diagonalized., As a consequence, the
matrices 1n Equation (11) with the same subscript (x or v) which are linear
combinatfuns of thetir powers are also dlagonalized by the same transforma-

tion. The (circulant) eigenvectors of these matrices ave then chosen to

. construct X ud Y (for details see Appendix B). This plves:

. “Beam [16] originally showed the unconditional stability of the alpo-
rithm whan applied (consistently) to the equation:

uy +uy tu, - r(uxx + ‘5"}')

This analvsis {8 extended here to the case where the dissipation terms may
be tourth derivatives as well asx second derivatives, Also, in the present
anaiysls, these dissipation terms are differenced in a way that {s not
necessarily time-accurate,

[ T W AR T R B st e
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ij = 1/7/7 uxp(min)

Yo = 1/VK exp(m10,>

where o, = 2n{y - 1)/J (= 1,2,...,3) and 8, = 2n(k - 1)/K

(k - 1,2,... ,K).? The eigenvalue of the j forward shift operator asso-
ciated to the elgenvector Xj - (ij) is simply xm+1.j/xm.j = exp(ihj).
Similarly, the eigenvalue of the k forward shift operator assoclated to
the eigenvector Y, = (Ymk) 1s exp(i6y). The eigenvaiues of other oper-
ators are obtained as linear combinations of the powers of exp(ioj) or

exp(iﬁk). For example, the eigenvalues of the matrices A,, By, C,, D,

and D, are given, respectively, by:

aj » 1 + Bvx(icj) + ridj
b, = vx(icj) + eid

b/ b

exp(ie1) - exp(-iej) = 21 gir.

ic

3

d

d! d, or d,° — for second or fourth-order smoothing

3 3 3

The eigenvalues of the¢ matrices Ay, By, Cy. Dy, and D; are denoted by

3 3 (22)

-exp(-iﬂj) + 2 - exp(iﬂj) w 2(1 - cos 8

j)

8, bk' 1ck, dk‘ and dé. and are given by an equation similar to Equa-

tion (22).

3355955; It is shown, in Appendix B, that X and Y are unitary, that is:
x~1 = X* (adjoint of X) = X°
y-! = y* (adjoint of Y) = ¥t

This is because X and Y represent (finite-dimensional, inverse) Fourier
transforms,

P L i)

T e -
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With ihis choice of X and Y, the matrices Ay, Bx' Ay' and By in

Equation (17) are all dlaporal.

As a result, the matrix A {tself uvecomes

a diagonal matrix with eigenvalues given by:

3

This glves:

{n which

”jk
Bjk

A

Ik
Bjk

where ¢, = Vi€ and

becomes:

or

¢ { X
ikt Tkt %k

. _ ~1 il B R |
ik 1 (uJ bj)ak aj (ak bk)
- (23)
_ayay - by + by
8jak
! + i
Jk jk
A, oW e 24)
ik qu + iﬁjk
and ajk are real and given by:
1
a (1 + ridj)(l + ridk) - 0¢c)c,
- 0[(1 + ridk)cl + (1 + Eidj)C?] |
(25)
- - ' '
Ty " feld) + dp)
- "\‘jk - ((‘1 + C'\)

)

Co ® VyCh- The stability condition (Ixjkl < 1) then

N2 37 o o2 2
Yk + ij SN + Bjk (26)

-qukto(dJ )t re;(dj v - Zﬂjk(C1 )+ (ep +e) 20

or

2re(d3 + da)[(l + \1dj)(l + Cidk) - GPCIC?] _ ﬂe?(d' + dﬂ)?

J

P26+ )+ ed)ey + 1+ tydgepl = ey + e 20

R Tt

ol omy

T W, WS
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or
T+ Q{cy,c,) 20 (2,)
where

T = ce(d3 + d&)[Z(l + -1dj)(1 + Eidk) - Ce(dj + di)] (28)

and Q(cy,c,) is a quadratic form in ¢,,c, given by:

Qlej,cy) = [20(1 + c,d) = 1]e)® + 2[6(2 + £gay ¥ ydy)

- ezcc(di + di) - 1]clc2 + [26(1 + eid

Note that if no smoothing is applicd (ce =y 0), T vanishes identically,

- 1c,? (29)

while Q(c;,c,) reduces to (26 - 1)(c1 + c2)2. From this, one concludes
that the Fuler explicit methed (6 = 0) is unconditionally unstable for this
casc, while the trapezoidal time-differencing method (6 = 1/2) as well as
the Euler implicit method (6 = 1) are both unconditionally stable, as well
known [2,3].

Now consider again the general case where Ea and t{ are nonzero. Since
the wave speeds a and b as well as the time~step At ought to be arbitrary,
the parameters Vv, and Vy snd consequently ¢; and c, must be considered as
free parameters. The condition expressed in Equation (27) then breaks into

two:

T

v

0 (30)

Qle,cy)

v

0 (31)
Equation (31) will be examined first. In view of Equation (29) it is appar-

ent that its satisfaction requires, in particular, that the coefficients of

clz and c?2 in Q(cl,cz) be nonnepative, This gives the following necessary

conditions:

D e e T o
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2001 + ridk) 21

(3.)

2001 + Lid Y21

3
The definitiona of dJ and dk (Equation (22)) indicates that these eigen-
values are positive (dissipation), but tend to zero (for fixed values of

{1 and k) in the limit of a mesh refinement Ax,A* + 0 (or J,K *» <),

Hence,

Equation (32) requires that

0 > % (33)

Sufficiency is obtained by enforcing, also, that Q(c;,c ) be nonfactor-

able. This pives the following condition:

" _ n? ] ] - 2
[a(2 + ridj + c(dk) B re(q1 + dk) 1]

- [26(1 + ¢ d) - 1][20Q0 + ridj) -1]1 .0 (34)

Expanding above quartic form in 0 would reveal that ©° can be factored

in it., For this reason, after a few simplificactions, a condition equivalent

to kquation (34) can be obtained In the form:

gjk(ﬂ) s 0 (35)

where gjk(o) is a quadratic form in 0 given by:

- 0%c¢ 2(4°" 'y2 ' ' .
sjk(o) 0% q (dj +dp) 2ere(dJ + dk)(eidj +e.d

* 205+ dp) 4 ci?(dj - 4’ (36)

+ 2)

Equation (35) must be enforced for all values of j and k and for the par-

ticular value of 6 which corresponds to the chosen method (8 = 1/2 for

trapezoidal timo-differencing, 8 = 1 for the Euler implicit methed). In

this way, a condition on ¢_ and €4 results,

e Before expliciting this con-

dition, assume momentarily that Far £4» and 8 have been chosen to satisfy
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precisely this condition. Then, certainly, for some arbitrarily chosen

values of j and k, it is true that

By < By (®) £ 0 (37
if one defines g;k = Min gjk(ﬂ). But ng(O) achieves its minimum for
0 = (r_idj +ed ¥ 2)/{Le(d5 + dé)} so that:
g;k - (e idJ +ed + 2)? + 2¢ (d; +d) +e ’(dj - d )z
- ;rizdjdk - blegdy +oegdy + 1)+ 2e,(d) + )
= '”Ee(di + d{() - 21 + ttidj)(l + sidk)]
- - ee(d‘yi-di) (38)

where T s given by Equation (28). Since Ee(dj + dL) > 0, this shows
that Equation (30) is redundant {if Equation (31) is enforced. Consequently,
the satisfaction of Equations (33) and (35) constitutes the necessary and
sufficient condition for unconditional stability.

Expliciting Equation (35) requires some further algebraic treatment

which 18 presented in Appendices C and D, From this, if one lets

= (0 ~-1/2)/8", the following stability conditions result:

re = Meg) s gy < Bleg + Vieg) (39a)
5 (o = 20) < e (39)

for the case of second-order smoothing (see Appendix C), and

20(2¢, ~ Vieg) < € 5 28Vie (40a)
20 (e - §) € ¢y (400)

for the cese of fourth-order smoothing (see Appendix D). The corresponding

domains of "unconditional stability" are shown on Figure 1. Note that in

T AT .
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=~ &¢,
€ = 46./0
u = (0-1/2)/62

12 r
€ = ¢ 2\/ue

8u |~

€= 1/2 (€ - 2u)
au

[ DOMAIN OF
STABILITY

| J
0 4, 8u 12u 16u

€= 166.
8“ f = 46./0
r u=(6-1/2862
Fe " 2\/‘“ €= 1/2(e-2u)
4u
DOMAIN OF
¢ C STABILITY
€ =¢-2\/ut
°|
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1l | | J e uw p
0 ' 8u 124 16u '
€

(b) Fourth-order smoothing applied explicitly.

Pigure 1.- Domain of unconditional stability for periodic boundary
conditions.
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case fourth-order sw~otking is applied, this domain is bounded (Figure 1b).
For the trapezoidal-time-differencing scheme, the domain reduces to Lhe

line €y = ee/z in case second-order smoothing is applied, and collapses

to the origin in case fourth-order smoothing is applied. These conservative
results conflict with the authors' numerical experience (see Chapter IIT).
This was attributed to the assumption of periodic boundary conditions which
results in an inadequate model relaxation problem, as mentioned at the begin-
ning of this section. For this reason, the case of specified boundary data

is examined in the next section.

3. The case of specified boundary data

When the solution u" is specified at the boundaries, the forward
shift operator, frid (0,0,1), and the backward shift operator, Trid (1,0,0),
are no longer inverse of one another, and cannot be simultaneously diagon-
alized as they could for periodic boundary conditions. (In fact, they are
both singular and in Jordan canonical form, or the transpose of 1it, with
all the eigenvalues equal to zero.) As a consequence, in Equation (11),
matrices with the same subscript (x or y) cannot be expressed as linear
combinations of (positive or negative) integer powers of a unique (shift)
operator, and cannot in gereral be simultaneously diagonalized. This is
true, in general, for the matrices Ay and B, together, and Ay and By
together. (If second-order smoothing is applied, a case of exception occurs
when ¢4 = ece.) However, approximate commutation of the right- and left-
hand sides of Equation (11) occurs when the coefficients of the smoothing
terms are either very small or very large compared to the coefficients of

the convective derivative operators C, and Cy. This situation corresponds

to
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S<lor> 1 (#1)
v

where € s either £y OF €, and v 1is either vy or vy.

In practice, implicit smoothing is introduced in an attempt to keep
the coefficient €o directly proportional to At, and still maintain uncon-
ditjonal stability. If one assumes a priori that this is possible,“ and

sets

€a T Og At

42)
Ci = aiﬁ At
for some constants a, and ay, Equation (41) becomes:
2% and & << 1or > 1 (43)

The wesh spacing parameters Ax and Ay can certainly be considered as very
small and so are Ax/a and Ay/b, in general. However, if this modcl prob-
lem ic of any relevance for the Euler equations, the wave speeds a and b
should play the roles of tihe eigenvalues of the Jacobian matrices A and B.
Scme of these eigenvalues can eventually become very small in some regions
of a transoric flow field (see Chapter IV), so that botn limits in Equa-
tion (43) are of interest. If one makes the assump.:ion that these extreme
situations ((1) Ax/a and Ay/b very small, and (2) Ax/a and Ay/b very
larpe) are those that produce the binding conditions for stability, one is
temj.ied to analyze the asymptotic properties of the algorithm in these two
limits. 7This is precisely what is done in the remaining part of this

sect ion.

“To bring 1 theoretical support to this assumption is precisely the
motivation for this analysis.

LT s bat



22

Consider flret the casc where Ax/a and Ay/b are both very small,
This case will be referred to as the case of large Courant numbers (»x and
vv). Choose X and Y to be the tranrformations that diagonalize the

matrices C_ and C, respectively. These are given by (see Appendix B):

x y
Xpg = 27 + 1) 1™ sin mé 4 @

Yo = "2/ (K+ 1) 1™ sin me,

where now ”j = jn/(J+1) (J=1,2, .. .,J), and Ok = kn/(K + 1)
(k = 1,2, . . .,K). As for the case of periodic boundarv conditions, these
transformations are unitary (Cx and Cv are skew-symmetric), so that:

Xy = Xpy = Y270+ T -1)) stn 16,

(45)
_1 - * - r—'"‘,—’—_"_ k
Ymk Ymk v2/(K + 1)(-1) sin kﬁm
As a result of this choice, the matrices CA and Cy can bo wrirten a-
follows:
- -
Uy X(in)X
(46)
- -1
Cy Y(iKy)Y
where K‘ = Diag(cj) ard Ky - Diag(ck), in which now, ¢y = cos Bj and
Ci ®* cos (. On their part, the matrices Ax and ﬁx in Equation (18)
become:
4 -1
Ay = I, + 1ov K+ €, (X7ID,X)
(47)

R -1
Bx - 1vxl(x + ce(x Dxx)

and the matrices Ay and ﬁy are given by similar equations., In these equa-
tions, matrices proportional to vy or “y are now considered as principal
parts, and the oth'r matrices as perturbations. Recall that as a particular

case of application of a general result of perturbation theory (see, e.p.,
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[17]), the first-order perturbations on the eigenvalues of a diagonal
matrix (with distinct eigenvalues) are simplv the diagonal elements of the
matrix by which 1t {s perturbed. 1In view : Zquations (17) and («7), it
appears that the off-diagonal c¢lements of A are themselves first-order
perturocations and thus contribute to the eigenvalues of A by terms that
are at least second-order perturbations. Such perturbations are neglected
in the remaining part of this derivation. In this appr .mation, the

matrices Ax and Bx. for cxample, become diagonal matrices with eigenvalues

given by
aj =1 + 9\’x1Cj + Li'lj
. (48)
- ] ©~ !
bj \xiCj + ‘edj
where &j and &3 are defined by
YL emln v
dj (X ka)jj
(49)

' . =1t
1y = 7iny,

and terts of order (f/vx): are neglected with respect to one. But Equa-
tion (48) is analogous to Equation (22). Thus, unconditional stability 1is
enferced bv Equation (35), provided dj’ dk' di. and di ave replaced by
JJ. dk' 33. and dﬂ. reapectively, which act as "cffective eigenvalues"” of
the smoothing operators at large Courant numbers. These effective eigen-
values are evaluated in Appendix E. In particular

d, = d, =2 (50)

(which is the average value of d1 or dk); making the corresponding substi-
tutions in Equatfon (35) vields, olter some simplifications:

fenﬁ(d; + di) - aa(zsi +1)+2.0

t -

-
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or

¥é _ B
eiz 2 (Ce Y) (51)

where again u = (6 - 1/23/82, and v = (1/4)Max(&5 + &&). In particular,
if second-order smoothing is applied, a; = aj = &é = ak = 2, so that y =1

and Equation (51) becomes:
sy >3 (£, = 1) (52)
4 >3 (e

if instead, fourth-order smoothing is applied, Max(di) and Max(di) converge

to & in the limit of a mesh refinement (see Appendix E), so that y -~ 4 and
Equation (51) becomes

€ 2 28 (Fe - %) (53)
One can observe an analogy between Equations (52) and (53) and Equations (39uv)
ard (40b).

Consider now the reverse situation where the Courant numbers vy and Vy
(alternatery the wave speeds a and b) are small compared to the coeffi-
cients ¢, and ¢y of the smoothing teims. For thic case, the matrices
X and Y appearing in Equation (17), are chosen tc be the orthogonal
matrices £ and n that diagonalize the (real symmetric) smoothing operators
D, and Dy (and also D} and D;), regpectively. (The matrix £ is explicited
in Appendix B. Tt is found symmetric, but this property is not used here.)
In this way, the smoothing operators D, and Dy (and D, and D;). which pro-
duce the principal part of A, are represented by diagonal matrices, while
the convective derivative operators vxcx and vyCy, now sought as perturba-
tions, arc represented by the following similar matrices:

uxCx = vxﬁtcxi
(54)

vyCy = vyntc

-y y"
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1t second-order perturbations on the eigenvalues of V' are neglected, only

the diagonal elements of  Coand €, nead to be retained,

X These are sero

because Oy and (7\,. and consequent iv Cy and (f\, are skew-svmmettvic.  Hence,

first-order analvsis and seroth-order analvsis of this case produce the

same result.  The latter one consists of treating the case of pure diftfusion

for which Equation (213) applies {f, {n the definitions that follow this

squat fon (Equations (24) and (25)), the parameters, ¢ and ¢, are sot equal

to rero, ana {f 01 and ﬁk are detined as In Fquatfon (45). Since these

are the only modifications to bring to the analvsais developed for periodic
boundary conditions, the stability cenditfon 1s given by Equation (30), or
equivitlent v

21 4. YL+ 0, d))

. ] ~
eh CRIEN CHE A IR (55)

Enforcing that Equation (55) be satistied for sll values of |} and k

resulted In the following condition:

(v’t‘—l‘ - .12) for t‘e s 1
(56)
:) for Ca 2

for the case where second-order smoothing {s applied, and In

fs
Po
’

-

(7
PO
TN
~

i
Py —
/

—

Ceo v'l;‘ - ll. for ta 2 1
1 (57)

tor the cuase where fourth-order smoothing {s applied.  (The dertvation of

Fgquations (50) wd (57) Is given In Appendix F),

ln conclusion, an approximate defintt{on of the domain of unconditional
stabil ity should be obtatned by combining the conditions gliven in Equa-

tions (52 and (56) for the case where second-order smoothing is applied,
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and in Equations (53) and (57) for the case where fourth-order smoothing 1s
applied. These domains are shown in Figure 2 for the trapezoidal time dif-
ferencing method (9 = 1/2), and in Figure 3 for the Euler implicit method
(6 = 1), On the latter figure, the domains that have been previously
obtained assuming periodic boundary conditions, are reproduced for compari-
son. It appeals that in assuining specified boundary data instead of
periodicity, results in less stringent stability limitations.

The key result of this analysis is that it suggests that the domain of
unconditional stability in the (ee, ei)-plane is unbounded, allowing the use

of arbitrary values of At and €., provided ey 1s maintained sufficiently

e’
large. (This will be demonstrated in the next chapter by various numerical

experiments that were conducted on a more complex problem.) 1In practice, it

should be sufficient tn let

1

€

= % or 2 (58)
e

D

when eithei1 second-order or fourth-order smoothing is employed. I{ now,

€e 1s kept directly proportional to At, the inconsistency of the algorithm
is removed, and this, theoreiically, without violation of the property of
unconditional stability, provided Equation (58) is enforced. This was not

possible with the original formulation (Equation (2)).
C. Application: Sequence of Parameters

Iu Section IIB above, it was shown that in the modified differencing
scheme, Equation (3), the numerical dissipation could be kept directly pro-
portional to Act. If this is done, the steady-state solution is independent

of At, and much larger values of At can be taken without triggering
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9r LINE ¢, = ¢ /2 ALONG WHICH

UNCONDITIONAL STABILITY L, t ’
gl 1S ACHIEVED WITH PERIODIC 7 |
8.C. 7
7+ 4

| LIMITATION FOR SMALL
-6 COURANT NUMBERS

€, > V2, -1/2i

5 ,
€l s
4 L7
R LIMITATION FOR LARGE
3l- - COURANT NUMBERS
0 6 > Ve,
2 s |
LIMITATION FOR SMALL
. COURANT NUMBERS
' ¢, # V2T, - 1/4) (a)
0 RS W S S SN SRR U S
LIMITING STABILITY CURVES
77777 FoR f1  JBLC.
16
1.4}  LIMITATION FOR LARGE
COURANT NUMBERS
12 €, 2 ¢,
1 p—
€ ,8 -—

STABLE
LIMITATION FOR SMALL
COURANT NUMBERS

€ < Ve - 1/4

(b)

J | | — | ] |
Q 2 4 68 8 1 12 14 16 18 2 22 24 26

€q

ta) Second-order smoothing applied explicitly.
{b) Fourth-order smoothing applied explicitly.

Figure 2.- Domain of unconditional stability of the trapezoidal time
differencing scheme.
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LIMITATION FOR LARGE
COURANT NUMBERS

€ = 1/2 (e, - 1/2)

LIMITATION FOR SMALL
COURANT NUMBERS
€ 2 12 (e, -1/8)
J L1 | I | J

(a) Second-order smouthing applied explicitly.

LIMITATION FOR LARGE

— COURANT NUMBERS
€ = 2(e, - 1/8)
L— STABLE
B 77, LIMITING STABILITY CURVES
= UNSTABLE\ FOR FIXED B.C.
NN
STABLE DOMAIN OF STABILITY
PERIODIC FOR PERIODIC B.C.
LIMITATION FOR SMALL
COURANT NUMBERS
| | L | L1 1 ! ] ] J

2 4 68 8 1 12 14 16 18 2 22 24 26

€e

(b) Fourth-order smoothing applied explicitly.

Figure 3.~ Domain of unconditional stability of the Euler implicit method.
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nonlinear instability. Large values of At, as well as a sequence of a
small to a large 4t might thus be used to accelerate steady-state
convergence. In this section, some motivations for using this technique
are given. Consider again the simple model two-dimensional first-order
wave equation. lquation (10). If the solution u 1is specified at the
boundaries, and if numerical dissipation is not applied, the eigenvalues of
the iteration matrix L can be obtained from an equation similar to

Equation (23), and are given by:

1 - vxvy ce ej cos 6y + i(0 - 1)(vx cos GJ + vy cos ek)

jk 1 - VxVy €08 ej cos Ck + " {v

A

(59)
cos 0, + vy cos ek)

X 3
where v, = ah/Ax and vy = bh/dy. The h?~term which appears in the real
parts of both numerator and denominator of Ajk is the cross term that

results from the approximate factorization of the left-hand side of the
difference equation.

It 18 directly apparent that for the trapezoidal time differencing
method (8 = 1/2), the modulus of }jk is exactly equal to 1, whether
approximate factorization is used or not. This means that no dissipative
mechanism exists to permit the steady-state convergence of this method,

unless smoothiny; is applied or boundary conditions are modified.

Consider now, the Euler implicit method (6 = 1), and rewrite A

ik as
follows:
M T TG (60)
1k
where
hi (a/Ax)cos 9j + (b/Ay)cos ek]
¢jk T1- h?(a/Ax) (b/Ay)cos 6, cos 0 (61)

b k
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Without approximate factorization, the h?-term in the expression of ij

would disappear. Then |¢jk| would be proportional to h, and |x1k|

would decrease with increasing h, In this case, the larger the time-step,

the faster the uccavergence would be, However, a different conclusion can be

drawn {f approximate factorization 1s used. For chat case, for given wave

specds (a and b), and frequency parameters (6, and Ok)' the modulus of \

]

achieves a minimum when |®jk| is maximum, and this occurs when

jk

- | 8x . Ay 1/2
h a cos 01 b cos Bk (62)

This shows that there exists an optimum time-step parameter h which not
only depends on the wave speeds, a and b, and the mesh spacing parameters,
Ax and Ay, but also o1 the frequency parameters, 0‘ and Ok. For small
values of cos )j and cos Gk (interpreted as low frequencies), or for small
wave speeds a and b, a large time-step 1s desirable, as anticipated. How-
ever, for values of |cos Oj| and lcos le of order 1 (interpreted as high
frequencles), the Coutant numbers ah/Ax and bh/Av  should themselves be of
order 1 for a rapid reduction of the residuals, To illustrate this, the
range of values of cos Oj and cos Ok for which ijk[ < C (a conatant
taken to be 0.95), is represented in Figure 4 assuming Ax/a = * . for
different value: of the Courant number v = ah/Ax = bh/Av, On this tigure,
corners (|cos B‘I = 1 or |cos OLI = 1) are interpreted as high frequency
regions, and the neighborhood of the lines cos GJ = () and cos Ok = () as
low frequency regions. The circles represent the values actually achieved
by vcos Oj and c¢os O

The domain Ixjk' s C consiats of two atrips iaat converge towards the iow

K for a mesh containing 15%15 interior grid points,

frequency region when At 1increases.

the
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Figure 4.- The domain |Ajk| < C for a given Courent number.
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From this, one concludes that & large time-step should be efficient at
low frequencies, but also, that a sequence from a small to a large time-step
should be efficient by nc* privileging any particular frequency band.

These concepts have served as a guideline for the numerical experimen-

tation of the next chapter.
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I11. NUMERICAL EXPERIMENTATION ON STEADY-STATE CONVERGFNCE

In this chapter, a model problem governed by the Euler equations is
solved numerically to ccmpare the iterative convergence properties of the
modified algorithm, given by Equation (3), to those of the base algorithm,

given by Fquation (2).

A. Model Problem

A model transonic flow problem was selected to test the convergence of
the modified differencing. 1In the past the transonic flow about a nonlift-
ing biconvex airfoil with linearized boundary conditions has served as the
prototype problem for relaxation algorithms and so this problem was used
herc. A variable grid with clustering was used to resolve flow-field
gradients [see Figure 5), but the equations are solved on a uniform trans-
form planc by introducing simple stretching transforms.

The solution procedure is as follows. The values of the conservative
variables at interior points are first advanced from some starting solution,
using either Equation (2) or Equation (3) with h = At. (The Euler implicit
method (8 = 1) is preterred here, to the trapezoidal time differencing
method (8 = 1/2) which is nondissipative (see Section TIC), because the
emphasis, in tYese numerical tests is on steady~-state efficiency.) Then,
verv simple boundary conditions are applied. Free-stream conditions are
enforced at the inflow and upper boundaries. Along the body, the y compo-

nent of velocity is obtsined from thin airfoil theory:

v = U,(dy/dx)y (63)

where U, 1is the frec-stream velocity, and (dy/dx)B the body slope which

is a specified function of x. All other unknowns are obtained by

) MM«qun: R R O
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Figure 5.- Sketch of the computational domain.
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(zeroth~order) cxtrapolations. Higher-order boundary conditions improve
accuracy, but are deliberately avoided in this study because they can sig-
nificantly degrade the stability and convergence properties that one would

prefer to isolate.

B. Results

Results for a 10-percent-thick biconvex airfoil at M, = 0.84 are
shown in Figure 6, and compared to a potential solution by Holst [8]. It
should be noted that a coarse yrid and simplified boundarv conditions have
been used in order tr test a variety of parameters. Much better solution
accuracy is obtained by grid refinement and use of more accurate boundary
conditions. Detailed solutions of this nature are available in [4].

The solution shown in Figure bt was obtained using cither Fquation (2)
with a nondimensional At = 0.03 and €o = 0.03, or Equatisn (3) with a
nondimensional At = 0,38, €o = 0.38, and vy 2‘e' These values were
each found to be close to optimum by a trial and error process. The con-
verpence historles for both cases are shown in Figure 7 where root-mean-
square reridual error as well as the average difference between the con-
veryed and intermediate Cp distributions are indicated. Recall that the
boundary conditions are applied in an explicit-like manner, which is
expected to slow the more rapidly converging case, that is, Equation (3)
morc significantly than Equation (), which uses more time-steps. Figure 7
shows that the modified differcvncing converges to steady state abcut 8 times
faster than the original scheme. This experiment tends to verify the cou-
clusion diawn from the model problem — a large value of At can be eoffec-

tive in achieving more rapid steadv-state convergence.
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10% CIRCULAR ARC {M_, = 0.84)

—= HOLST
@ PRESENT CALCULATION (e, = At)

-8} o°
@

x/c

Figure 6.~ Converged pressure distribution along the airfoil.
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In these experiments, the starting solution was taken t> be the one
obtained after 25 applications of the base algorithm (At = ¢, = 0.0,
€ = 0), with all the properties initialized to their free-stream values
and gradually introducing the body by increasing with time the body slope
(dy/dx)B from O to its correct value. In this way, impulsive starts were
avoided.

It must be noted that the ratio of €4 to ¢ can significantly influ-

e

ence the convergence rate. It was verified that for €a = AL, and a single
optimized time-step, this ratio could optimally be set equal to 2 (for the
Euler implicit method), as indicated in Figure 8. For larger values of
this ratio, the dissipation term added implicitly excessively stabilizes the
transient behavior of the solution. For smaller values of this ratio, the
coeff’cient ¢,, and consequently At = ¢,, must be reduced for stability
(see¢ Figure 3b), and this reduces the rate of convergence.

The e¢ffect of using a sequence of At 1is indicated in Figure 9. In
order to simplify the optimization of the sequence, the fol owing fcrmula

was used
a -1\

Aty = Atl + (r—l‘) (AtN - z\t:)
where n= 1,2,. . .,N foc a cycle of N time-steps, ¢ = 2 1in most experi-
ments, and Aty and AtN were optimized. The data show that a sequence of
At 1s efiective but not as much as one mipht expect. The sequence of 6 At
is about 10 times more effective in steady-state convergence than the
original sicheme. The data shown are for optimum values of €ar o and At,

In comparison to the same scheme based on using a single optimized time-step,

a scquence of parameters saves 50 to 75 time-steps out of 150 to 250 time-steps,
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Figure 8.- Eftect of the ratio of ry to :, (Euler implicit differencing

scheme with e, = At).
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Figure 9.- Effect of using a sequence of time-steps (Euler implicit differ-
encing scheme with €, = At and ¢y = 2re).
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depending on what solution tolerance is desired. 1In this case, plottable
accuracy 1s actually achieved after 150 time-steps with the most effective
sequence. Again the model problem preuicts the iterative convergence proper-
ties of the more complicated flow, and the use of a sequence of time-steps is
also an effective way to accelerate steady-state convergence. In these tests,
the optinum values of At and Aty were found to correspond to a limit of
stability. It was also noted, that at this limit, the average value of At
for a cycie of N timc-steps is ahnut the same for all the cases shown in
Figure 9.

Note that more sophisticated procedures for controlling various param-
eters would lead to better convergence rates. Tn particular, it was
obse¢rved that a more rapid convergence could be obtained (for this problem)
by setting €y = 1.02¢, (instead of €4 = 2¢,), €, = At and choosing a
sequence of ctime~steps that includes one or two that are sufficiently large
for (ei, (e) to fall in the unstable range. It also appears that the
operational range [At,, Aty] should be optimized with the solution itself,
that is, with the iteration counter n. It is most likely that these would
produce better improvements. Nevertheless, they have been avoided here
because oj their lack of simplicity and generality.

Sensitivity in rate of convergence to nonoptimality is weaker 1f N
is large. For example, Figure 10 shows that for a cycle of 6 time-steps,
if Atl and Ate are set equal to half of their optimum values, At? and At:,
the algorithm, over the first 300 steps, loses less than 20 percent in rate

of convergence, and remains as efficient as it 1s for a single optimized

time-step.
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Jigure 10.- Sensitivity to nonoptimality (Euler implicit differencing
scheme with €, = At and ey = 2¢,).
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The cifect of varying the expenent e for fixed At, and At; is
indicated 'n Figure 1), As e decrcases, the average Lime-step increases
and so does the rate of convergence until ncnlinear instability occurs
(e = 1),

Sensitivity in -ate of convergence to free-stream Mach number M, was
also studied as indicated in Figure 12. Three cases were computed using
cthe same sequence of time-steps; that is, the sequence was not optimized
for M,. The data indicate that the implementation of implicit smoothing,
and the use of large time-steps cxtend to subsonic and supersonic regimes
as well as trapnsonic regime.

The 1nfluence of the boundary conditions on the rate of convergence
was also investigated. In this test, a sequence of six time-steps given by
At, = 0.05, 0.2, 0.45, 0.8, 1.25, and 1.8 was used, and €, = At = 61/2.
This sequence was not optimal, but this is not beliesved to have had any
importaace. At first, a fully converged solution was obtained. The start-
ing solution was then constructed by increasing by 5 percent the converged
solution at interior points. The rate at which this disturbence could be
eliminated, for some given boundary conditions, was then evaluated by com-

puting the following estimate tor the spectral radius of the iteration

matrix:

50
o '[EMSBOOIFMSQSO

where RMS, 18 the root-mean-square residual error (the right-hand side of

Equution (3)) after n applications of the algorithm., An estimate for the

number n;, of time-steps required for a reduction of the residual errors

by a factor of 10 was then computed according to the formula:
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Figure 11.- Rate of convergence for various
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Fijure 1..- Effect of the free stream Mach number (Euler {mplicit differ-
encing scheme with e, = At and ey = 2€e).
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n;g = 1/colog,((p)

Four tests were made. In these, the inflow and upper boundary values were
fixed to free-stream conditions as normally done. However, the body bound-
ary and outflow boundary values were either fixed to their converged values
or variable, as permitted by the regular extrapolation procedure. The
values of p and n;; cbtained in the four cases are collected in Table 1.
The results show that boundary conditions have a very strong effect on con-
vergence properties. By fixing the body-boundary values (although this is
impractical since it requires prior knowledge of the solution), the rate
convergence doubled from what it was in the regular procedure. This favor-
able effect is even stronger if instead the outflow boundary values are
fixed. This case is more practical for transonic flow applications where
the properties at the outflow boundary can be fixed to free-stream values
without significant degradation of the solution accuracy. If now all four
boundaries are fixed, an improvemeut in rate of convergence by a factor of
4 is observed. This experiment indicates the strong dependence of the
iterative convergence properties of the algorithm on boundary conditioms,

and opens a possible area of investigation for future work.

Table 1. Influence of the boundary conditions on the rate of convergence

Outflow boundary Body boundary

valucs values e Mo
Extrapolateda Extrapolateda 0.8800 191
Extrapolated Fixed 0.97633 96
Fixed Extrapolated 0.96881 73
Fixed Fixed 0.95064 45

aRegular procedure.
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Finally, the effect of using only second-order smoothing, explicitly
as well as implicitly, was investigated. For this test ¢, was set equa’
to At/2. The base algorithm (e; = 0, and ¢, = At/2) was found to operate
optimally with At = 0,22, 1f instead, a sequence of time-steps is
employed an improvement in rate of convergence by a factor of 2 or so is
achieved, as shown in Figure 13, This test also shows that the use of
second-order smoothing considerablv increases the rate of convergence of the
regular algorithm (eq = 0) itself. However, unacceptable losses in accuracy
occur if this type of artificial dissipation is employed to calculate a
flow field with a large change of pradient in the solution. Eveu 1in the
simple biconvex airfoil calculation considered, the solution at the leading
and trailing edges is notriceably degraded, althcugh the shock wave is still
adequately resolved.

One concludes in general that large At 1s very effective and that use
of a sequence of At  can be perhaps twice as good. The algorithm is not
overly sensitive to nonoptimum features., However, better rates of improve-
ment seem possible (e.g., the added effectiveness when only second-order
dissipation 1s used, better boundary condition procedures).

One remarks that some ldeas have proved effective as well in more com-
plex flow calculations [4-6]. However, the additional sensitivity of the
more complex flows to nonlinear instability forces the use of much smaller
time-steps. Consequently, the improvement in rate of convergence is much

less — typically a factor of 3 or 4 over the base algorithm.
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Figure 13.~ Etfect of using second-order smoothing explicitly as well as

implicitly (Euler implicit differencing scheme with €o = ae/2).
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IV. ON THE EFFECT OF SPACIAL VARIATION OF THE JACOBIAN MATRICES

In the computation of iransonic as well as subscnic flows,

the eigen~

values of the Jacobian matrices A = [JE/uy] and B = [3F/3q] are real,

and of mixed sign. This is the reason for adopting a time-dependent

approach, combined with the use of central space differencing whick, in

principle, produces purely imaginary eigenvalues for the convective

derivative operators

Cy = (20%)6.A

Cy = (20y)8,B

(64)

The unconditional stability of the implicit algorithm, derived in Chapter II

for a scalar, linear model equation, relies crucially on this property. 1In

this chapter, the possibility of breakdown of this property for

equations due to variable coefficlents is examined.

A. Analysis

In this analysis. the matrix ¢

the Euler

x 18 considered, in particular. A mesh

contalning J»K interior grid points is assumed, so that the dimension of

the matrix C, 1s (I~Kxp)“ for p dependent variables (p =

4  for two-

dimensional flows). Yor convenience, it is here assumed that the J\'.»p

components of the solution vector q are ordered as follows:

t t t t t . t t
Q= @y Qe ceen Ay Qe Qpae v e Gyas s s Gy Qo
where qjk contains the p dependent variables evalvated at (x

Then. making the simplifying assumption that ‘he solution v

is specified at the boundaries, permits us to write the matrix

v mern RS e 4

C
L q‘]K)t
(65)
j\ yk)'
ector q

Cx as follows:

e

P

R Vo
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Cx = BDlag{Cy ,) (k = 1,2,. . .,K) (66)

X

where C_, . 1is the following JpJp matrix:
x,k

~1
-

0, A ) g =1,2,. .., (6

Cx.k = BTvid(-A J41.k

j-‘vk'

in which A is the p p Jacobian matrix A evaluated at (xl. vk).

i

Cleasly, 1f A was some symmetric constant matrix, the matrix C,
woul’ be real skew-symmetric and would irdeed have purelv imaginary eigon-
values. However, one mayv question whether this propertv carries over to
the general case where A is a4 nonsymmetric pxp matrix subject to appre~
clable variations from point to point, due to the nonuniformitv of the mesh
as well as the solution {itself. The purpose of this analvsis is precisely
to bring some information about this question.

It first appears from Equations (66) and (67) that the eipenvalues of
the matrix Cy are obtalned by collecting those nf the matrices Cx,k
together. For thls reason, only one of these matrices will now be consid-
ered, with the subscript k omitted in what follows.

It i+ known that the Jacobian matrix A for the Euler equations can
be Jdlagonalized by a real transformation T, so that:

A= TAT™! (68)
where A = Diag(am) and m = 1,2,., . .,p. ULxplicit expressions for T and

A tan be found in [18]. For example, for a two-dimensional flow, if
Cartesian coordinates are used: a! = a- = u, al = u+ ¢, and a"% = u ~ ¢
where u 1is the x component of the velocitv vector and ¢ 1is the local
specd of sound. For the same case, the eigenvalues of the Jacobian matrix

. ° 3
B are b =b = v, b7 = v+ ¢, and b = v - ¢, where v {is the Vv com-

ponent of the velocity vector.

P
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Now, construct the following matrix

T BDiag(iJTj) (6Y)

and perform on the matrix C,(truly Cx,k for some k) the following sim-

ilarity transformation:

_l vd
Cy = & 1cy?

. = BDiag[("i)jT-l]BTrid(—Aj

0, A
3

120 (33
- j+1)Br)uag(i Ty) (70)

= jg

where
- -1 A -1 A 7
o = BIrid(Ty'T, (A, |, 0, T{T, AL ) (71)

It is desirable that all the eigenvalues of the matrix o be real and for

all those of the matrix Cy to be purely imaginary.
Note that if the flow variables are continuous, the matrices Tj_lTj_l

-1m
and Tj ’ depart from the identity matrix orly bv terms of ((Ax).

141 For

this reason, one expects the eigenvalues of the patrix o to be well repre-

sented by those of the fcilowing matrix:

of = BTrid(Aj_l, 0, AJH) s (72)

In making th'ls approximation, one assumes the effect of variable coeffi-

clents to consist primarily of .he variati-n of the c¢igwnvalues of the

matrix A1 rather than the varlation of its eigenvectors. This assumption

is made here, and the next step consists of rearranging the rows and tne

columns of the matrix o' to collect the eigenvalues aim (for given m)

together, More precisely, for some nonsingular matrix P, which corresponds

to a product of permutations, the matrix

L n']o'r

(73
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which is s*nilar to the matrix ¢', becomes
o" = BDiag(r™) (m=1,2,. . ..p) ('4)
where
~

r® = Trid@a” ., 0

m ’ =
j-10 O aj+l) o= 1,2,. . .,0) (75)

Hence, the eigenvalues of the matrices o'

and 0" are obtained by collect-
ing those ¥ the matrices ™. These eigenvalues must be real for those of
the matrix Cy to be purely imaginary. 1n this way, the analysis is
reduced to the one of p independent scalar problems. Thus, one is lead
to examine the eigenvalues of the matrix ™ for a particular value of m,
and to omit this superscript in what follows. This is done in Appendix G,
whose main results are repeated here without derivation.

It turns out, that for all the eigenvalues of the matrix I to be

real, it suffices that the following condition holds:

ajaj+l >0 (3 =1,,2,. ..,J-1) (76)

This condition is met either when each eigenvalue a: of the Jacobian matrix

J

A has the same sign at all the grid points, or when it does change sign at
one or more grid points but vanishes exactly at one or more grid points
before changing sign. The condition given in Equation (76) is not, however,
necessary for all the eigenvalues of T to be real. Nevertheless, this
favorable result is most unlikely to be true if this condition is violated.

Tc see this, another result of Appendix G is recalled. For this, define

sequences of coefficients aév) and B;v) by the following recurrence
formulas:
(v) (v-1) v)
“m+l Bm + a2m+la?m+2am
an
B(v) - oM 4, 8(v)

mt1 w1 Gom2®omeatn

o A v i
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where m is a natural integer and v = 0,1,2,, . .,m, aud the followving

conventions are adopted:

RO RGN
m m

(18)
H(-l‘ - ()
m

These definitions beinp made, 1t turns out that a necessary condiii{on for

all J cigenvalues of the mati.x I' to be real {s that the coefficient

B(\*)
m

, Incase ' = Zm + 1, be positive for

“;v). in case .l = 2m, or

(o)

aad 8
m

‘ v= 0,1,2,. . ..m, It {s easy to calculate 1in particular méo)

L 2aa A

which ar~ given by:

(79)

- 818‘. . .(l.‘m+ (—l-+—1~—+ . e e +._L_.)
- - 1 81 83 n_}m—i-]

In general, uQV) and ¢

)

o are polvnomials of degree 2(m - v) of the coef-

ficients “j‘ and it is most unlikely that they all will remain positive if

the condition given in Equation (76) is violated at one or more grid points,

) (0
- In particular, situations where u; ). alternately R

;O), i{s negative should

o

be common.  If this happens, the matrix ' has an odd number of pairs of

et -
[
-
3 7%
~ -
(]
o]
—
-3
*J
.
.
~
=
r
3
e T ST B SENETA D T a0 B PR S MNP SR AN R MRS

purcly fmaginarv eigenvalues, sav 1 v, and -1 T, (0= 1,2, . .,2a + 1),

-

To these correspond the real eigenvalues ~T, and r, for the matrix C,, 1

hallt of which are negative. For trapezoidal time differencing ond arbitrary

Y time-step, or Euler implicit differencing and sufticiently larpe time-step,

P

RN iibheeninn. dik ol S g e e
.

there real nepative efgenvalues produce numerical {nstability unless thev

are balanced by a suftfcient positive contribution coming from the smoothing

operators.  These untavorable cigenvalues should, however, be of small

modul i [ one assames that they are essentially determined by the ontries
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of the matrix €, in the neighborhood of the point where the alternation

~

of sign occurs (weak destabilizing effect). However, since the mat:-ix Sk
appears in the difference equation multiplied bv At, the coefficients of
the smoothing operators should themselves be kept proportional to At as
required for consistency.

In conclusion, it appears that a particular form of instability due to
variable coefficients may be triggered if central space differencing is
used at a point where one of the eigenvalues of the Jacobian matrix A or B
changes sign. However, use of numerical dissipation proportionally to At
and in sufficient amount, should remedy this type of instability.

In the following section, some numerical examples of this phenomenon

are presented for some scalar model problems.

B. Numerical Experiments on Scalatr Model
Equations with Variable Coefficients

In the numerical experiments, the trapezoidal time differencing method
was used because this method is neutrally stable, that is nondissipzative,
for scalar linear problems with constant coefficients. In this way stabil-
ity problems due to variable coefficients could be isolated more easily. 1In
2ll tne cases, scalar functions of the orly two independent variables x and
t were considered.

In the first test, the following problem was solved

u, + [a(x)(u - 1)]x - Euy, =0 (-1 <x<1)

(80)
u(x,0) = uy(x) [= 2 exp(~5x?)]

where the wave speed a(x), chosen to be

a(x) = 4x/(1 + 27x")

b B e B SR LT 5 E A . P
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had the sign of x. For ¢ = (0, this problem {s a rarefaction wave problem.

The characteristic curve in the (x.t) plane has the slope dt/dx = 1/0(x)
and is polnting outward ¢f the domain of integration at the endpoints

x = ‘1. For this reason, specifying the solution at these boundary points
would here be improper. Instead, in the numerical computation, (zeroth-
order) extrapolation was used at these points. In this way, some small
positive terms were introduced in the diagonal of the matrix C, at the
uppcr-left and lower-right corners. The numerical computation of the
eigenvalurs of the matrix Cy confirmed that these terms produce some
positive contributions to the real parts of the elgenvalues (compared to
the case where the solution is specified at the boundaries), and thus have
a favorable stabilizing effect (outflow of residual errors). Despite this,
with ¢ = 0, the trapezoidal time differencing method was found unstable
when using a mesh with grid points located at Xy = {j - 16.5)/15

(g« 1,2,. . .,32), so that a(xlﬁ)a(xl7) < 0. This instability remained
for value:. of  less than 6 x 107", or so. For larger values of ¢, the
numerical solution remained bounded and in fact convergent, at all the grid
points, to the exact steady-state solution of this problem which is

u(x,») = 1. This steady-state solution was not altered by the smoothing
terms in this Ildeal case where u(x,®) is constant in x. It was also
verified that a stable but not convergent (to steady-state) alporithm was
obtiained for € = 0 by locating the grid pdints at Xy = (x - 16)/15

(J: 1,2,. . .,3Ll) so that positive values of a(xj) were separated from

neg.tive ones by a true zero.

Sl at.
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In the r2maining tests, the following class of problems was consicdered:

up + [0€u, )] - euyy = [olue(x),)] (0 < x<1)

u(0,t)

u,,(0)

( (81)
U(l,t) = Um(l)

u(x,0) = uj(x) (specified)
in which u,(x) = exp(—sz), and the functional forms of ¢ and u, varied
from case to case. The particular form of this equation was chosen antici-
pating that for sufficiently small e, the stationary solution of this
problem would approximate the tunction u (x). This function was chosen
rather arbitrarily but nonuniform so that eu,, $# 0 at the steady state.
Morcover, 1in the numerical computation, the Lerm appearing on the right-
hand side of the differential equation, that 1s the source term, was cen-
trally differenced in the same way that the corresponding term of the left-
hand side of the equa ‘on, that is, the flux term. In this way, the
smoothing term «¢u,, was entirely responsible for the discrepancies
between u(x,») and u,(x).

Although, to the author's knowledge, specifying the solutions at the
boundaries always leads to a well-posed problem for

€ > 0 (assuming smooth

data), this is not necessarily the case for « = 0, as mentioned previouslv.

In particular, for the latter case, the following inequalities

?
sm 20 (82)
u
x=0
d
2 <o (83)
X=1]

.
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should hold for the characteristic curve to point inward the domain at the
boundary poiuts. In all the cases that follow Equation (82) applied, but
not necessarily Equation (83). This question will be discussed for specific
exanmples.

Ten experiments were conducted on linear test equations that were
obtained by letting the flux function ¢ be of the form ¢(u,x) = a(x)u.
These experiments are defined in Table 2. For che first three cases, a(x)
was chosen strictly positive. For this reason. the implicit alpgorithm was
found stable. However, adding artificial dissipation was found necessary
to obtain a steady-state solution. For a rather small value of . (Test
No. 2) the numerical solution is very accurate as shown in Figure l4. For
this case. the slightly improper boundary condition u(l,t) = u (1), does
not disrupt the stability of the algorithm (even for ¢ = 0), and does not

seem to degrade the solution accuracy significantly (for e >~ 0). This

Table 2. Numerical experiments for linear test equations

Test No. a(x) u, (x) € J Comment s

1 3.5-3x exp (-5%) 0 52 Neutrallv stable
2 3.5-3x exp (-5x) 0.025 52 Couvergent

3 3.5-3x exp (-5x) 0.025 52 Convergent

4 1-3x exp (-5x") 0 52 Unstable

5 1-23x exp (=5x°) 0 62 Neutrallv stable
6 1-3x exp (~5%) 0 62 Neutrally stable
7 1~3x exp (~5%) 0.1 52

8 1-3x exp (~5x%) 0.1 62 Convergent

9 1-3x axp (-5x) 1.0 52 pooT accuracy
10 1-3x exp (-5x) 1.0 62
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¢ = alXiu
a(X) =5.5-3X
€=0.025
DT/DX =10

——— EXACT STATIONARY
SOLUTION (¢ =10)

O CONSISTENT B.C.
3 A INCONSISTENT B.C.

U(X)

»}

Figure 14.- Steady-state solution of a linear equation with a positive flux
gradient and o small amount of artificial dissipation added.
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shows that the well-conditioned nature of the algebraic system of difference
equations is not necessarily equivalent to the well-posedness of the differ-
ential problem that one attempts to solve. The result of Test No. 3 is also
indicated on Fiyure 14. It appears that in applying a quite erroneocus
boundary condition at x = 1 results a perturbation in the steady-state
solution that 1s localized to a small neighborhood of this boundary. This
is another aspect of the well-conditioned nature of this problem when
a(x) > 0 everywhere.

In the experiments numbered 4-10, a(x) = 1 - 3x so that the sign of
a(x) switched from positive to negative at x = 1/3. Without dissipation
added (¢ = 0), and a mesh of 52 grid points, the algorithm was found
unstable even with the exact stationary solution for initial solution (Test
No. 4)., However if 62 grid points are used, the numerical solutiun remains
bounded (Test No. 5). This is because positive and negative elements of
the sequence aj = a(xj) are separated by a true zero in the latter case.
However, the solution does not converge to a stezady state for a different
initial solution (Test No. 6). If dissipation is now added (¢ > 0), steady-
state convergence is obtained but the accuracy of the steady-state solution
is very poor, as shown on Figure 15 for Tests No, 8 and No. 10. One observes
on this figure, that 1f ¢ 18 too small, say € = 0.1, a peak appears in
this solution near x = 1/3. The reduction of this peak requires excessive
amounts of artificial dissipation which degrades severely the solution
accuracy. An energy concept can explain the existence of this peak. For

this purpose, deofine the following "energy" function:

1
E(t) = f u(x,t)dx (84)

(¢}

“

—— -




1.2

U(X)

60

¢ =a(X)u
a(X) = 1-3X
DT/DX = 10

— EXACT STATIONARY
SOLUTION (e=0)

O €=01
A e=1

rp——

Figure 15.- Steady-state solution of a linear equation with a flux gradient
citauging »ign and some artificial dissipation added.




[

Uy By T L em
Wﬁﬁﬁmﬁmﬁw"& M oRos s B ’ PRRPRp SRR TR

61

and consider the case e = 0 for which

1

E'(t) = f ug (x,t)dx
[o}
1
= f iolua(x),x] - ¢(u,x)}, dx
o]
=0 (85)

since wu(x,t) is constrained to equal wu,(x) at x =0 and x= 1. As a
result, E(t) is a constant (nondissipative phenomenon). Since, also,
the characteristic curves are convergent at x = 1/3 (compression wave),
this energy is accumulated at this point, in the 1limit t -+ », In fact, it
can be obtained directly from the differential equation that

u(l/3,t) = u,(1/3) + C exp(3t) (86)
for some constant C, while for x # 1/3, u(x,t) converges to u,(x) in
finite time. Hence this problem does not have a steady-state solution in
the ordinary sense, unless the starting solution wu,(x) is trivially chosen
to be u,(x). These experiments indicate the difficulties encountered in
attempting to zchieve the stationary solution u,(x) by a Qiscosity method,
when a(x) changes sign.

Very similar results were obtained for nonlinear test equations. For
these, six experiments, defined in Table 3, were conducted. Here, the start-
ing solution uo(x) was obtajned by adding to the stationary solution wu,(x)
a gsecond-degree polynomial q(x) = 5x(x - 1) that is zero at the boundary
points and negative at interior points. In this manner, negative as well
as positive values appeared in the initial solution. Here the flux function

¢ was chosen to depend on u only,

. -~
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Table 3. Numerical experiments for nonlinear test equations

Test No. ¢ (u) U, (x)-u,, (x) € Comments
11 u+ ud/3 5% {x-1) 0 Neutrally stable
12 u+u?/3 5x(x~1) 0,025 Convergent
13 u+ ud/3 5x(x-1) 0.005 Convergent and

very accurate

14 u?/2 S5x(x-1) 0 Unstable
15 u?/2 Sx(x~1) 0.025 Convergent
16 u?/2 Sx(x~1) 0.005  Convergent and

very accurate

For the first three cases, the wave speed af(u) = 3¢/3u = 1 + u? > 0,
and instability could not be triggered, Without dissipation added (Test
No. 11), the solution does not converge (to steady state), bui remains
bounded. This is indicated by Figure 16 where an intermediate solution,
obtained after 104 aplications of the algorithm, is shown. On this figure,
the values of u at the points X}» X3, Xgy +» « . fall on a smooth curve,
and so do the values of u at the points Xps Xys Xgy, » . . but the two
curves are distinct. This is because central space differencing does not
couple the two subsequences (u;, uj, ug, . . .) and (upy uyy ug, + . W),
This is a known reason for requiring the use of artificial dissipation when
a leap-frog type differencing is employed, However, 1f a small amount of
dissipation is added, the numerical solution converges to a steady state.
As an example, a very accurate solution obtained with € = 0.025 (Test
No. 12) 1s shown in Figure 17. For an even smaller value of ¢ (Test No. 13),
exact stationary soluiion, u,(x), and mumerical steady-state solution are

indistineuishable to plottable accuracy,

B " SR
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|
¢=U+ U3/3
14 t €0
DT/DX=5
s T = 1000
s, ——— EXACT STATIONARY
1.2} a SOLUTION (€= 0)
A O UXMJ=1,35,...
4 A UXJ),J=24,8,...

Figure 16.- An intermediate solution of a nonlinear equation with a positive
flux gradient and no artificicl dissipation udded.
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Figure 1/.- Steady-state solution of a nonlinear equation with a positive
flux gradient and some a. . ificial dissipation added.
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6=U+U3/3
€ =0.02%
DT/DX = 10

EXACT STATIONARY
SOLUTION (e =0)

O NUMERICAL SOLUTION
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The last three experiments deal with a mcdified Brrgers' equation
obtained by letting ¢ = u“/2. 1In this case, the wave speed a(u) = 2¢/Jdu = u
changes sign twice at the initial time, but not at vhe steadv state, It no
dissipation is added, instability ocrurs (Test No. 14). However, for ¢
sufficiently large, the solutlon does converge, I . e 18 shows the steady-
state solution which 1s obtained for <« = 0,025 (Test No. 15); again, an
even more accurate solution can be obtained for a smallz2r value of ¢, say

. £ = 0.005 (Test No. 16). Here the solution accuracv s not significantly
degraded by the addition of artificial dissipation. This terds to indicate,
for this simple prohlen at least, that viscosity methods converge when the
wave speed a = J9/3u does not change sig. (at least) at the steadv state.

In conclusion, the experiments do confirm that a particular form of
instability can b~ triggered when the wave-speed a(u,x) = 3¢/3u, which
plays the role of an eigenvalue of the Jacobian matrix of a flux vector,
changes sign at some point. if central space differencing * vuvsed at this
point. Severe soluticn accuracy degradation was experienced for a case
where the nonuniform steady-state solution was such that the alternation of
sign in the wave-ipeed remained at the steadv state. “his w.s to the
extent of making the practicability of viscosity methods questirnable for
this case. However, the extension of this dramatic result to the solution

of the Euier equations is uncertain,

C. Furthey Comments
The derivation of Section IVA above has brought a rationale, bused on
natrix analvsis onlv, to explain one ot the reasons for “he necoscity of using

artificial dissipation. Tt also suggests that better stabilitv properties

et bt il o il e emiie. i eyt b e e e -
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o= U2/2
€=0.025
DT/DX = 10

EXACT STATIONARY
SOLUTION (e=0)

O NUMERICAL SOLUTION

- Steady-state solution of Burgers equation with a source term and
artificial dissipation added.



g Y

Bl e Smeiosin Ml e amen =

- L

67

would perhaps result from simple modifications of the differencing at the
points where onc¢ « f the eigenvalues of the Jacobian matrix A or B changes
sign.

. m
For exarple, 1f the passage of sayv a through zero is smooth, the

3

Jacobian matrix could be synthesized at one point from a modif ed eigen-

m

3

ensur2s that the matrix Cyx has purely imaginary eigenvalues only in the

system in which a would be set equal to ~ero exactly. This procedure
case of a scalar equation. However, & reduction in the required amount of
adod numerical dissipation would perhaps result from applying this
techn que.

Another procedure, applicable to the Euler implicit method, consists
of averaging conservative with nonconservative differencing. This gives:

Cy = Ax(dxA + Aﬁx)

= BTrid(-(A +A,), 0, (A + A1

(RIS Ay (87)
which would generate a real skew-rymmetric matrix if A we.c symmesric,
which 1s pot, in general, for the Fuler equations. However, a more favor-
able eigenvalue-spectrum can be anticipated from this. Using different
arguments, Kreiss and Oliger [19] proprsed essentially this for Burg. rs'’
equation. Since A and B are not themselves symmetric matrices, for the
airfoil calculation of Chapter ITI, using a uniform mesh in this test, the
algorithm was found to be stable with only cwice larger time-steps when

using this technique,
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V. CONCLUSION

In this work, two conjectures were first mede. First, it was claimed
that the domain of unconditional stability of the base algorithm could be
enlarged by introducing artificial dissipz¢ien in the implicit part of the
differencing, as well as in the explicit part. Second, it was anticipated
that the iterative convergence properties of the algorithm could be‘improved ,
by the use of larger time-steps per se, but also by the use of a cyclic
sequence of time-steps.

A heuristic stability analysis brought a theoretical support to the
first conjecture. This analysis suggested that the time-step and the dissi-
pation term added explicitly could both be arbitrary, provided the dissipa-
tion term added implicitly was kept sufficiently large. 1In particular, the
two dissipation verms could be kept proportional to the time-step. In this
way, the consistency condition was met, and the steady-state solution was

independent of the time-step. This has been well confirmed by the numerical

experiments that were conducted on a wodel transonic flow problem governed

by the Euler equations. In fact, for this problem, it has never been pos- \
sible to find a large enough value of the time-step, for which any adjust- \
ment of the dissipation terms would not remedy stability problems. However,

for extremely large values of the time-step, the required amount of artifi-

clal dissipation was so large, that the iterative properties of the algo-

rithm were degriaded, although the numerical algorithm was stable. This was

attributed to nonlinearities. For this reason, it was found that if a

single time-step was used, this time-step could be optimized to a value

roughly one order of magnitude 'arger than the one permitted by the base



| |

Lo s po o vt e Ui il e T e e L TR Y MR RO I - 3

¥

T R et S TR BN AR R L 7L Do R4 A e e : ot ' o

69

d..ferencing scheme. In this manner, the modified algorithm was found to
converge about eight times faster than the base algorithm. Even mor. rapid
convergence was obtained by using a sequence of time-steps. With the best
sequence, an improvement 1n rate of convergence by a factor of 10 (over the
base algorithm) was »nbserved.

Various numerical experiments have shown that the modified algorithm
was not very sensitive to nonoptimum parameters. In particular, approxi-
matcly the same convergence rate was obtained when using a sequence of
eithcy four, six, or eight time-steps. Also, the nonoptimality of the
sequence of time-steps, for a fixed number of them, did not seem to degrade
the convergence rate severely.

Finally, a particular form of instability that the algorithm is sub-
ject to has been attributed to the spacial variation of the Jacobian
matrices of the Euler equations. This instability round to occur when
central space-differencing 1s used at a point where o. - of the eigenvalues
of cither one of the Jacobian matrices changes sign. Addition of a suffi-
cient amount of artificial dissipation remedies this type of instabilit:.
Nevertheless, two techniques have been proposed that could reduce the amount
of required artificia) dissipation. More conclusive results on this topic

would, however, require further research.
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VITI. APPENDIX A: MATRIX FORM OF THE FINITE-DIFFERENCE EQUATION FOR THE

CASE OF A SCALAR DIFFERENTIAL EQUATION

In this appendix, the (matrix) definiticn of Kronacker products and
sums, and some of their properties are first recalled., With this back-
ground, the finite-difference equation for the case where the implicit
algorithm is applied to the two-dimensional first-order wave equation is
derived in a form particularly convenient fcr the stability analysis of

Section IIB.

A. Some Background on Kronecker Products and Sums
The definitions and thte essential properties of Kronecker products and
sums can be found in most books on matrix theory (e.g., [17] or [20]). The
propecties that are used in Section B of this appendix are repeated here,
without proof, for the reader's convenience.
Let A and B be two square matrices of dimension JxJ and KxK
respectively. The Kronecker product of A and B 1s denoted by A ® B and

defined as the squatre matrix of dimension JKxJ¥ given by:

r
allB 8123 « s+ s alJBW
ale azzB . e aZJB
A®B =] ., . . (A1)
rJIB AJZB N aJJB-

The Kronecker sum of A and B 1is defined as the matrix A €)IK + 14 ® B

where I, 1s the mxm {identity matrix.

i

ek €T

T Ty o (X bt BB ARH A, W Lok P BRI, A e AL TR T i,
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The following properties are true:

(A®B)®C=A9(BOC) (A2)
A+A'")YOB+B')=AQB+A"©B+A©®©B" +A' ®B' (A3)
(A®B)(A' ®B') = (AA') © (BB') (A4)

where A' and B' have the same dimensions as A and B, respectively.

It follows from Equation (A4) that if A and B are nonsingular, then

so is A ® B and:
(A®B)" ! =a"1l 3! (AS)

An inportant result concerning the eigeneystems of Kronecker products and

sums can be stated as follows: 1If 1y, A,, - «» Ay are the elgenvalues

of A and Mys Mgs « « »» Mg are the eigenvaiues of B, then the eigen-

values of A ® B are the numbers Ajuk and the eigenvalues of the Kronecker

sum of A and B are the numbers XA, + 1

3 " For both, the corresponding

elgenvectors have the form:

- kﬁ
xlj y
k
x2j y
ij = . (A6)
3 k
ﬁxJ y r

where me is the wmth component of the eigenvector xj of A assoclated

to Aj’ and yk is the eigenvector of B associated to My

B. Application to the Finite-Difference Equation

In this section, the implicit algorithm is applied to the twc-

dimensional first-order wave equation (Equation (10)). The calculationms

arc made assuming the solution u equal to zero at the boundaries, but the

[ R e G B L e omha M e e e
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result would hold for otlher linear boundary conditions as well. The equiva~-
lence between operator notation (Equation (3)) and matrix notation (.iqua-
tion (11)) is explicited.

For this purpose, the components of the solution vector u are con-

ventionally orderad as follows:

um= (“11' Upgs == +s Ujgs Uppy Upos oo oy Ugps o v vy Ugyy Upgy o v oy uJK)t
. (A7)
where, as usual, ujk = u(xj, yk), j=12,...,3 and k=1, 2, .. ., K,
Let E; and E;, E;, and E; be the forward and backward shift operators

for the x and y directions. More precisely:

t
E;u = (Ugys Upgs « o oy Upgs Ugps Uggs oo ey Ugpy oo o5 0, 0, o\, 0)

E—u - (09 O) e o oy 0’ ull) u12’ AR | ulxt A | uJ-l 1’ uJ"l 2’ L uJ-l K)t
’ b4 ’
u

£}

t
- (ul?., u13, o s ey 0, u22, u23; o o oy 0, o s ey qu, uJa, ¢ . oy 0)

— t
Byu = (0 upps ooy iy Oy ey N S UL PR TR L J

(A8)
where boundary conditions have been taken into account.

For m = J or Kk, let I, be the mxm Jdentity matrix, and En be

the following mxm matrix

By = , (49)

A ——— b A

S s ey A

ERS S A A i e R e > 1

o~
z

g, ik, ® T

Swepor

Jeger

L T E
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If the matrix representatiors .f the operators o E,

< E;, and E; are

denoted by the same gymbols as the corresponding operators, it is :pparent

that:
Ef=E; ®TI, (A10)
E; = E; © L, (A11)
Ey = I, QE, (A12)
5= 1, QK (A13)

Clearly, these equations also hold for periodic boundary conditions, 1f the
lower left corner element of E; in Equation (AY%) 1is set equal to onme,
In this case, E; = E;1 so that forward and backward shift operators with
the same subscript are inveise of one another.

Linear comblnations of Equations (Al0) through (A13) and of their
powers and use of Equations (A3) and (A4) yield the desired finite-

difference equation (Equation (11)).

e e




)

i
i

[ R B T e R U R . o

77

IX. APPENDIX B: EIGENSYSTEMS OF TRIDIAGONAL MATRICES

In this appendix, the eigenvalues and eigenvectors of tridiagonal
matrices are recalled. This is done in two cases: (1) periodic boundary
conditions, and (2) specified boundary data.

Consider first the case where periodicity 1s enforced at the boundaries,

so that the general tridiagonal JxJ matrix has the following form:

b ¢ a")
a b
a b ¢ -
A = Trid(a,b,c) = " (B1) 3
a .b f
-C a bJ g

Define a sequence of vectors X; 3=1,2,...,J) by

Xpy = 1/ exp(mity) (B2)

where 6J =2n(J -1)/J and m=1, 2, . . ., J. If Equation {(B2) is alsc )

applied fcr m =0 and m= J + 1. the periodicity boundary conditions:

p——

xovj - XJ:j

(83)

X1 " Ay '

are found automatically satisfied by Xj. Now compute ij:
(ij)m - Amkxkj
- axm—l,j + mej + me+1,j

- ijj (B4)

where

Aj = a exp(—iej) +b+c exp(iej) (B5)

—ti
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this shows that X, 1s an eigenvector of A associated to the eigenvaluec

3
Aj. Now compute the following inner product:
J
(X )« X, © -1 exp(mia) (BS)
ph X RT3
m=1

where a = ek - ej = 2x(k - §)/J. This gives

<xj,xj> =] (B7)

for all j, and for {1 # k:

1 exp(Jiy) -1
X,,X% ) = < exp{ia) —A=—r—0™
377k J exp(ia, - 1 (B8)
= 0

Hence, the eigenvectors Xj (3
X that diagonalizes A, which contains tnese elgenvectors for column vec-
tors, §s thus unitary:
X~! = X*(adjoint of X) = X" (B9)

Consider now the case where the components of the szolution vector ave
constrained to be zero at the boundaries. For this case, the gen-ral JxJ
tridiagonal matrix is given by Equation (Bl) in which the upper-right and
lower-left coraer elements of the matrix on the right-hand side o. this

equation are set equal to zevro. [hen, define a sequence of veclors Xj

3=1, 2. . .., J) by:

X“j e« V27(J +-T7(/a7c)m sin mej (B10)
where ej =13/ +1)and m=1, 2, , . ., J. If Equation (Bl0) is also
applied for m =0 and m = J + 1, the boundary conditions

xo,j = xJ+1,j =0 (B11)

are found automatically satisfied by XJ. Now compute ijz

1, 2, . . ., J) are orthonormal, The matrix

R Y

i qr.‘.._,...—-—-——-v"
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(AR 7 A

= aX + bX . + X

m-1,] mj m1, 3
= AL X, B12
57m; (B12)
where:
sin(m - 1)ej sin(m + l)Bj
A, = a/ajc) ! —— + b + c(Ya/c)
j sin mGJ sin mej (B13)

= b + Yac cos Oj

which is found independent of m as expe:ted. This shows that Xj is an

eigenve *or of A associated to the eigenvalue Xj.
Now consider the particular case where a, b, and ¢ are real, with
algo a = ¢, and redefine the eigenvectors of A to pe Ej. Clearly,

those are (real) orthogonal since A 1s real symmetric in this case, so

that:
Epe) =0 (for 3410 (Bi4)
Er. plus:
¢, - 5
J
J - R
- 57 (B15)
where
R = Re(S)
5 (B16)

S = }: exp (mia)

m=1
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in which 2 = 21j/(J + 1). Computing S gives:

exp(Jia) - 1
exp(ia) - 1

exp (ia)

Ja
sin -—
2 (B17)

*

q—_?i(J"’l)

N

sin %

so that:

Ja

cos(Y + 1) sin 5

t9)

R = (818)

sia

(1Y)

Also:

coa(J + 1) %- cos “j = ( )3

[
(%4
=3

> +1
sin &5 = ,in "j - 5 = (—1)j sin %

<

~N

so that R = -1 aud (Ej,ﬁj> = 1. As a result, the matrix ¢ that diagon-
alizes A and contairs the eigenvect-rs (i for column-vectors is

crthogonal :

R =1 (B19)

This matrix is en plus symaetric:
A (B20)
In particular, . diagonalizes the smoothing operator D, of Equation (i2):

Dy = (21 + 2K)E = Z{i + EK¢) (B21)

where K = Diag(uj) a-d cy = cos Gj.
Now ccnsider the matrix C, = Trid(-1, 0, 1), in Eguation (12). In

view of Equation (510), it appesrs that this matrix i diagonalized by
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X = Df (B22)

where D {s the dlagoual matrix with mth eigenvalue equal to 17, Hence,

x-l - .t."l]')‘: = :.ﬁ - '*n* = x* (R23)

showing that X 1{s then unitarv as expected, since Cy s real skew-

symmetric. The eigenvalues of C. are given by Fquatfon (B13), and this

permits us to write Cx in the foliowing form:

~ - syye— |
€\ = X({K)X
= {D°KLD (B24)

where the diagonal matria K {s defined in Fquation (B21).
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X. APPENDIX C: STABILITY CONDITION FOR PERIODIC BOUNDARY CONDITIONS

AND SECOND-ORDER SMOOTHING

In this appendix, f£quation (39) which expresses the stability condition

for the case of periodic boundary conditions and second-order smoothing, is
derived. For this purpose, it is recalled that the satisfaction of Equa-
tions (33) and (35) constitutes the necessary and sufficient condition for
stability.

For the case considered,

d, =d' =2( - cos &)

3 b ]
(c1)
- ' = -
dk dk 2(1 cos Gk)
where "y -3 -1/ (g=1,2, .. .,J)and = 27(k - 1)}/K
(k * 1, 2, . . ., K), and it is convenient to let:
d, = d! = 4¢
B ] 1
dk = dk = 4
f c2)
,i = 4/4
o - r/l‘

In this manner, the new variables ¢ and n, which are not suvscripted for
notational simplicitv. take their values in the interval [0,1}. Equa-
tion (36) then become::

By (8) = VTI(E 4 )T = 20T(E 4 D [c(E 4 )+ 2]

+ 2E(E + n) + 07¢9(E - )’

= 0[(F - )+ 2 - 4len - 4uEE 4 )] (C3)

. S
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where u = (8 - 1/2)/t2. As a result, Equation (35) becomes:

f(&.n) < uE (c4)

where

- 2
£(£,n) = (E > ) (€ +n) - e? (cs)

The satisfaction of Equation (C4) for all fersible values of & and n is
equivalent to the condition:

S(r,¢) < Wt (C6)
where

S(e,f) = Sup f(t,n)
(D)
0 f, v &1

Some simple conclusions can be drawn at flrst., For this, note that, If
e=¢, £(),n) < 0 and Equation (C6) is satisfied. Thus, the algorithm is
unconditionally stable for every value of € (provided Fquation (33) holds)
for the case where the equation
) (c8»

¢ T +
u, +ose 4+ buy = c(uxx Uyy

is differenced in a time-accurate manner. Also observe that
f(1,0) = (£ - €¢)°/4 > 0, so that, uniess perhaps this value is zero, S(r,f)
is strictly positive. Consequently, for trapezoidal time-differencing
(8 = 1/2), since u = 0, letting + = ¥ constitutes ihe only way of
enforcing unconditional stability ‘see Equation (C6)). For this reason,
8 >1/2 and u > 0 are assumed in the remaining.

The next step consists of the determinaticn of S(:,¢), that 1s, the
maximization of f£(&,1) for fixed values of : and r. Inspection of

Equation (C5) indicates that f(£,n) is a homogeneous function of £ and n

-
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of degree one. Applications of Euler's theorem for homogeneous functions

gives the following identity:

f(g,n) =-g%£+%n (c9)

This shows that if there exists a local maximum of f(£,n) at a point of the
open square ]0, 1[ x ]O, 1[, this maximum is equal to zero. In view of
Equation (C4), it appears that such maximum, if it exists, does not yield
any binding condition for stability. Hence, the maximization of f(&,n)

can be reduced to the one over the boundaries of the square. Since, en plus,
f(£,n) 18 symmetric in £ and n, only two of these boundaries need tc be
considered. These are the segments: (1) 0 < £ <1 and n = 0, and

(2) £=1 and 0 < n < 1.

For n =0,

- 2
£(£,0) = (E 5 E) £ (C10)

It is maximum at the point £ = 1, which also belongs to the second se_ ent.
Consequently,

S(e,€) = Sup 4(n)

(C11)
0<ns<1
where
$(n) = £(1,n)
€ £ 2 2
- = £ - ¢2
( 7 ) (n+1) + o+ 1 £ (C12)
Differentiating Equation (C12) gives:
€ - € 2
¢'(n) = (5?;f:‘f¥) [(h+1)2 - w2 (c13)
where w=2¢/|F -€|]. If wsl or wcg 2. ¢'(n) does not change sign

when n increases from 0 to 1, and ¢(n) is maximum at either one of the
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two endpoints If 1l <w<2, ¢'"(n) <0 for 0<n<w=-1 and ¢'(n) 20

for w-12<n :1, so that ¢(n) 1s again mavimum at either onme of :he two

endpoints. Finally:

S(e,€) = Max[¢(0), ¢(1)] (C14)
One obtains:
- 2
¢(0)=(E;€) > 0
(C15)
by -2 (5- )
Equation (C6) then breaks into the following three inequalities:
-uEsC;Es/J‘c—‘
\C16)

Nfmt
!
=
A
™m

Using the definitions of ¢ and € given in Equation (C2) and making a few
simplifications yields Equation (39) (Q.E.D.).
Remark: 1In this derivation, .0 case has been made of the ~hape of the

function h(®) for which d, = d' = h(¢,) and d, = d' = h(@k). Hence,

1 J ] k k
Equation (C16) applies to all the cases where the same type of smoothing is

applied implicitly and explicitly, provided ¢ and ¢ are defined by:

£ = Ufi/xmax

- \
€ te/ max

where 1t is assumed that the eigenvalueg <f the smoothing operator vary from

0 to Amax' In particular, for fourth-order smoothing applied explicitly

and implicitly one would let:

and apply Equation (C16).
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X). APPENDIX D: STABILTTY CONDITION FOR PERIODIC BOUNDARY CONDITIONS

AND FOURTH-ORDER SMOOTHINC

In this appendix, Equation (40), which expresses the stability condi-
tion for the case of periodic boundary conditions and fourth-order smoothing,
is derived. For this purpose, it is recalled that the satisfaction of
Equations (33) and (35) constitutes the necessary and sufficient condition
for stability.

For the case considered,

d, = 2(1 - cos 8,) , d' =4d.?

] } ] j
) (p1)
dk = 2(1 - cos Ok) , dk = dk !
where Gj =2n(j - 1/0 3 =1, 2, . . ., J) and Ok = 2n(k - 1)/K
(k =1, 2, . . ., K), and it is convenient to let:
)
d, = 4f , d! = 162
h) ’ h|
d, = 4n , d! = 16n°
k k ! (02)
" e/’
Ee-E/l(, J

In this manner, the new variatles ¢ and n, which are not subscripted for
notational simplicity, take their values in the interval (0, 1]. Equa-
tion (36) then becomes:
84 (0) = 0257 (2 + n")2 = 208 (87 + n)[oe(E + n) + 2)
+ 28(67 4+ n7) + 822 - )° (D3)

Define:

(s 2_..r
g(&,n) = e r )}"'L(s £ (D)

-
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and
£(e,n) = g2(&,n) - wE(E? + v2) - 2
where u = (6 - 1/2)/62, so that
84y (0) = 40%£(E,n)
As a result, Equation (35) becomes:
f(g,n) < O

The satisfaction of Equation (D7) for all feas‘ble values of £ and n

equivalent to the condition:

where:
S(e,e) = Sup f(£,n)
0<g ns1l
Thus, the problem consistz of maximizing f(£,n) nver the closed square
fo, 1] x [0, 1]. For this purpose, one first looks for stationary poin

of f(g,r) that belong to the open square. At these points, if any exi

of ] -
Y 2g(£,n) 5%'- 2uEf - €2n = 0

(pé6)

(D7)

is

(D8)

(D9)

ts

sts,

(p10)
of 38 _ sumn - 25 o
an = 28(E,n) 32 - 2uEn - €E = 0
so that, in particular
2 _ 38
0 n a¢
) -
- ?g(ﬂ,n)(gﬁ - %g) + (20 - €2)(6 - n) {D11)

= (£ = n)[-28g(£,n) + 2uE - €2]
which requires the satisfaction of at least une of the following two

equiations:

3
|
i
|
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£ =n (p12)
2ut - 2gg(g,n) = €? (D13)
If Equation (D10) holds, it 1s also true that:

of 2f
0O=n o g 3T

28(5'“)[n %ﬁ'- £ %%] + 2uE(ST = n?)

28 (£,m[E(n? = £7) = 5 (n = )] + 2uE(E? - n?)

(€7 - n?)[2uE - 2Eg(E,n)) + eg(E,n) (€ - n) (D14)
Now, assume that f(f£,n) is stationary at a point (£,n) of the cpen square
that does not belong to the line ¢ = n, Then, at tl'is point, Equa-

tions (D13) and (D1l4) must hold simultaneously, so that:
0 =¢€(f 4+ n)+ple,n) = % [FEES +n?) + (2 + ) ("15)

If the trivial case ¢ =t = 0 1s eliminated, the satisfaction of
Equation (D15) is {mpossible tor ¢ >~ 0 and n > 0. This briags a contra-
diction to the assumption £ ¥ n. Consequently, if f(f,n) is stationary
at a point (i,n1 of the open square, this point belongs to the line ¢ = n,
Hence, it suffices t> enforce Equation (D7) on the boundaries of the square
and {ts diagonal segment 0 < £ = n < 1. Observing that f(f,r) {s sym-
metric in £ and n permits us to further reduce its maximization to the
one over the foliowing three segments: (1) 0 < £ =n <1, (2) 0« £ < 1,

n=9y0, and (3) .. =1, 0 n s 1., For this reason, three cares will now be

L ¥e)

examined separatcly.

o r—————ta—, <o =+
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é% Case 1: 0 <& =nc¢<1
h'i Define

R

$(E) = £(£,8)/&2

(D16)
; = (£ - ,” = (2uE + ¢2)
.

so that

o' (£) = 28(EE - €) (H117)

When ¢ increases from 0 to

€/t, ¢(£) decreases, and since ¢(0) = -Zue < O

remains negative. For values of ¢ greater than €/¢. ¢(£) Js an increas-

ing function of £. The satisfaction of Equation (D7) over the considered

segment 1s hence equivalent to the conditicn

1
}
i
‘ ; (1) = O (D18)
x This gives the following necessary condition for stability:
1
[N

¢ » % G - 2) (D19)

Case 2: 0 :8<1, n=20

For this case, Equation (07) takes the following particular form-

>

C

(5517§—£5) - uFET < & (D20)

i which is equivalent to:
g -
; (€ - £): < 4uE (D21)
3
; or
:
# - — ——
g FfL - 2vuf < £ & €8 + 2V)F (D22)
2
? \ The binding case for the inequality on the left corresponds to ¢ = 1, For
E the inequality on the right, the binding case corresponds to ¢ = 0. This
é gives the following necessary condition for stabilitv:

- 2ME < e < VAT (D23)

PPN ! o
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Case 3: f£ =1, 0:<nzs 1

For this case, one defines

¥(n) = £(1 n)

=l E@2 4 1) - e+ DI2 TG+ 1) - el (026)
which is a fourth-degree polynomial in n. The satisfaction of Equation (D7)
over the considered segment 18 equivalent to the condit‘on

¥(n) <9 (D25;
for 0 < n £ 1. 1t is assumed that Zquations (D19) and (D23) hold, so that
¥(0) and (1) are both nonpositive. Hence, if an additional condition must
be e¢nforced, 1t must be of the form:
v(®) <0 (D26)
where 0 - n* < 1, and
v'(n") =0 (D27)
(for a local maximum). Dividing the polynomial y(n) by its derivative
¥' (1), according to decreasing powers of 1, produces a quadratic remainder,
q(n). This gives the followiny identity:
v(n) = (an + b)y'(n) + q(n) (D28)
where
q(n) = an’ + B8+ y (D29)

The calculation of the coefficients a, b, &, 3, and ) glves:

a=1/4
b = - /(87) (D30)
and.
1 - B
a::-f(—)‘ét(t‘ - = 2u) - F"
R o= T%? ‘(53 - 4uT) - 4F° - 86?} (b3
y=1 r(Ew)’»auE%S—%w

T el

Cm wmmire s memAsw e -
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where tcrms between brackers [ ] are nonpositive, as a consequence of

Equation (D23). Hence, it is directly apparent that 8 2 0 and vy £ 0.

This implies that q(0) = y < 0. Now compute q(1):

q1) = a+ B + vy
(D32)
<L
- 16

€

- - - - - 1 .- -
2 - 3 —— (~4E2 - = - V2 - L
(4¢ 4E¢e 8ue) + 16 (~4¢ 8ce) + 4 (¢ £) it

where some nonpositive terms have been neglected. After a few simplifica-
tions, one obtalas:

q) €5 (- 20) - 2 uE (D33)

This indicates that in case € < 2¢, q(1) £ 0. 1If now, ¢ - 2¢ > 0, the
satisfaction of Equation (D19) requires that € - 2e¢ < 2u, so that

q(l) ¢ -ur/2 < 0. Thus, in all cases, q(1) < 0. Now, if a < 0, since

B <0 and y <0, q(n) < C for 0<n. If o> 0, q(n) achieves a mini-~

mum at the poinr
n=-5-20 (D34)

Wheth'r 7 belongs to the incerval [0, 1] or not, since q(0) and q(l) are
both nonpositive, so is ,(n) for all values of 1 1in this interval.

Hance, in both cases, q(n) < 0 fu: 0 < n

1.
Hence, if it happens that ¢(n) admits a local maximum at a point n*

of the open interval 10, 1[, then, as a consequence ¢’ Fquations (D27)

and (D28), the followirg is true:

¢ = q(n®) = 0 (D35)

Thi:. shows that ¢(n) =< 0 for all values of n in the open irterval ]0, 1[,

provided Jquations (D19) and (i!23) hold (sufficiency).

-
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In conclusion, the satisfaction of Equations (D19) and (D23) consti-
tutes the necessary and sulficient :ondition for the unconditional stability
of the algorithm for the case considered. Keplacing, {n these equations,
¢ and € by their defiaitions, given in Equation (D2), vields the desired
equation (Equation (40)).

Remark 1:
In this derivation, no case has been mada of the shape of the function

= ] = N LI 2
h(® ), dy h(ek), d h (8k). Hence,

h(®) for which d K

d' - hl(e
3= 0y 4y 3
Equations (D19) and (D27%) apply to all the cases where the explicit smooth-
ing operator D; (or D;) is the square of the implicit smoothing operator

D, {(or D), provided ¢ and € defined by

x
£ = eci/xmax
_ (D36)
€ = Ee/xiax
where it is assumed that the eigenvalues of D, (or Dy) vary from O to
Amax' Howvever, this has apparently no appiication, since the next step
after tne combination second-order inplicir/fourth-order enplicit smoothing
would be the combination fourth-order implicit/sixteenth-order explicit
smoothing, which is impractical.
Remark 2:
Note tnat Equations (D19) and (D23) are equivalent to Equation (C16).
This 1s because the same boundary valuves of Ff and n give rise to the
etavility corditions for fourth-order smoothing as ror second-order smooth-
ing. Hence the two cases only differ by scale factors which have been elim-

inated from Equations (C16), (D19), and (D23) by a .ropriate derinitions o*

the parcrmeters ¢ and E.
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XI1I. APPENDIX E: EFFECTIVE EIGENVALUES OF THE SMOOTHING OPFRATO.>

TYTY A N Ty

AT LARGE COURANT NJMBERS

The "etfective eigenvalues,' aj and 33, of the smoothing operators,
D, and D; = Dy or sz, were introduced in the development (. the stability
analysis for the ca.. of speci.led bourndary data and targe Courant numbers
(Section 1IB3). These effective eigenvalues are evaluated in this appendiy.

For this purpoc: 2, on recalls tlrat:

d

_1 v e
g = XTIy, (ki)

d’ X" 1p'x)..
dj (X Dxx,JJ (E

where the various matiices are of dimensions JxJ and defined by:

o
[

x = Trid(-1,2,-1) W
Dy = Dy or Dy

(E3‘
m > . 7
’2/(J t 1) i sin mo1

g

Y27 (3 + 1) (-l)j sin jog

Xa]

where Uj = n/(J+1) saadm, j =1, 2, . . J.

A

Applving Equacion (B)3) to the case where:
a=-1-c

b

'}
N
m

(E4)

gives

= i cos 81 + 2 + ULe?) (E5)

This shows that when the mactris = Trid(-1,0,1" s perturbed by mat+ix

€Dy = Irid(-e, 2r, =€), where ¢ (s a small parameter, the first-otuer
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perturbations brought to the eigenvalues of Cx have the coefficient 2.
This 1s equivalent to saying that:
d, =2 (E6)

as one could compute by expliciting Equations (El). But according to Equa-
tiors (B21) and (B22):

X Ipx

ED(2I + 2£KE)DE

o
L]
n

L]

21 + 2u*ku (E7)

where £, D, and K are defined in Appendix B, and
U = £Dg (E8)
is another unitary matrix. One concludes that the diagonal elements of
U*KU are all equal to zero. Considering now the case where D& = sz and
squaring Equation (E7) yields:
by = x~1p, 2x
= 41 + 8U*KU + 4U*K2y (E9)

Hence, for this case:

= 4(1 +w

jj) (E10)

bde =

where:

(U*K20)

€
n

33 33

=t
¢ 2
U )ijszzj

T 2
Ung Kme Vs

in which cp = cos 8- It has not been possible ‘¢ evaluate Vy4 explic-

itly. However, it appears from Equation (E1L) that LARE and consequently

REE.) SR
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d! 1s real and positive. Moreover, since U 1is unitary and symmetric, the

3
following is true for every value of j:

Z: lu . |% =1 (E12)
m= J

Since |cp| < 1, the following bound holds:

2.1 =
‘ oswjjggllumjl 1=1 (E13)

and consequently:
4 < le' <8 (E14)

The remainder of this appendix shows that the maximum value of d! does

i

converge to 8 in the 1limit of a mesh refinement. For this, let

w o= M?x wjj (E15)

to make the claim equivalent to the follcwing statement:

limw =1 (E16)

j—+ou

The simplifying assumption that J 1is odd is made, and one lets

J+1=2v (E17)
gso that &, = nv/(J + 1) = n/2. Since w < 1 (see Equation (E13)), it is

sufficient to show that:

lim wy,,, = 1 (E18)
* Joeo
, ' To evaluate w,,, one first computes Uy, wusing Equation (E8):

; Upy = (EDE)py = tmiP1184v

! J

J+1 LJ sin mej sin je\) (Elg)
J=1
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where the values of ¢ and D were taken from Avpendix B. Recall that

8, = 7/2 to simplify Equation (E19) as follows:

v
2k-1 -1
Upy ™ 5] i 1 z i sin(mezk_l) -(—1)k
k=1

Vv
- 2 2 sin[ (2k - 1)6,]

ke=1
2i
where
Iy = Im(op)
v (E21)
om = 2. exp[1(2k - 1)6]
k=1
One first computes op as follows:
v~1
op = exp (i) 3 explq(218))]
q=0
exp(2viby) - 1
= exe (18y) T,y - 1
exp(2vify) - 1
21 sin 6y (E22)
Note that 2v6p = mm, so that
- -1
“m * 21 sin o, (E23)
mt+1
1+ (-1
In = 2 sin O (E24)
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and

L i1+ p™
mw o J+1 sin 8

One now applies Equation (Ell) to the case j = v to get:

J

vy = 2 |Ugyl? cos? oy,
m~1

J J
2: lumvlz - 2: |Umv|2 sin? Om

mw=] m=1
2 2
-1-—23 22 [1+ 0™
g+1) =1
2
=l-531

where Equations (E12) and (E17) have been used. Equation (E26)

the statement made in Equation (E18) (Q.E.D.).

DAk v ooy

(EZ5)

(E25)

validates
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XIII. APPENDIX F: STABILITY CONDITION FOR SPECIFIED BOUNDARY DATA

‘ND SMALL COURANT NUMBERS

The stability analysis developed in Secticn IIB3, has shown that when

the data are specified at the boundaries, the following approximate stabil-

ity condition applies to the case where the Courant numbers v, and vy are
small:
- ' '
21 + sidj)(l + cidk) ee(dj + dk) >0 (F1)
where
dj « 2(1 4+ cos ej)
(F2)
dk = 2(1 + cos Bk)
in which ej = 7j/(J+1) (=1, 2, . . ., J) and 8 = Tk/(X + 1)
(k =1, 2, . . ., K), while
d! = d d,?
39S
' 2 (F3)
dk = dk or dk

depending on whether second-order or fourth-order smoothing is applied. 1In
this appendix, the condition expressed in Equation (F1) is explicited for

these two casee. For this, one lets

dy = 4€
d, = 4n 2 (F4)
e = el
)
and
d5 = 4E or 162
dy = 4n or 16n? (F5)

€o ™ €/4 or €/16

i R —————— r——
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In this manner, the new variables £ and n, which are not subscripted for
notational simplicity, take their values in the interval {0,1], and Lqua-
tion (Fl) becomes:

201 + £} + en) - 2(EP/2 + nP/2) > 0 (F6)

—

where p 18 the order of the smoothing applied (p = 2 or 4).

A. Second-Order Smoothing
In the particular case where second-order smoothing is applied (p = 2),

Equation (F6) becomes, after rearrangement:

2
E—Zss_Z-LLe—gl (F7)

£E+n
Hence, we are led to determine the function:

f(e) = Inf g(g,n)

(F8)
OSE’nSI
where
2
g(g,n) = 2 L.X 0 (F9)
£ +n
and to write the stability conditions as follows:
- 2 < £(e) {F10)
For this, one lets
x=§+n
(F11)
y=n-4
In this way, the domain of study (see Figure 19) is now defined by:
0 < xg2
(F12)

lyl < Ynax X

where ymax(x) »x or 2 - x depending on whether x <1 or x 2 1.

Computing

‘ I” .lll l.'ll o -n-mn*um.mlinMIW*m B LI R L e R St asmee B0 B
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Figure 19.- Domain of study in the (x,y) plane.
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4 + 52(32 - yz)
2x

g(&,n) = h(x,y) = (F13)

indicates that for given x, h(x,y) is minimum at y = ymax(x)' Let
¢(x) = h[x,ymax(x)]. For 0<x<1, ymax(x) = x 8o that &(x) =« 2/x
which achieves a minimum value of 2 at x=1. For x 2 1, ymax(x) = 2 - x

so that:

4+ c2[x2 - (2 - x)?]

2x

(x) =

L 20 - €?) + 2¢2 (F14)
X

Hence, 1f € 2 1, ¢(x) is nondecreasing over the interval [1,2], so that
¢(x) 1is actually minimum at x = 1. This gives
f(e) =2 for €21 (F15)
If now, instead, ¢ < 1, ¢(x} decreases when x increases from 1 to 2, and
¢(x) achieves its minimum at x = 2, so that:
f(e) =1+ ¢€? for e<1 (F16)
Combining these results with Equation (F10) yields the following conditions

for stability:

™
v
o
l
'—.I
g
o
o}
ol
1A
&

(F17)
2 4

™l

€ 2 % -1 for

Replacing ¢ and € by their expressions in terms of €4 and €, given in
Equations (F4) and (F5), ylelds the desired equation (Equation (56)).
Finally, the remark that was made on Equation (Cl16) in Chapter IX also

appiled to Equation (F16).
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B. Fourth-Order Smoothing

In the particular case where fourth-order smoothing is applied (p = 4),

Equation (F6) becomes, after rearrangement:

< 271 + €£)(1 + €n)

(F18)
52.’.“2
Hence, if one defines, for this case, a function g(&,n) by
g(g,n) = 2L+ €A + en) (F19)

£2 + n?
and a function f(e) by Equation (F8) the stability condition takes a form
gimilar to Equation (F1G), which is
€ < f(e) (F20)
New variables x and y are also defined as in Equation (F11l), and the
domain of study is still given by FEquation (F12). Here,

4 + sz(x2 -Ayz) + 4ex
x2 + y2

g(E,n) = h(x,y) =

(F21)

Note that for given x, !y| £ x 1in the domain, so that the numerator of
h(x,y) is positive and decreases when |y| increases. The denominator is
also positive but it increases with lyl. Thus again:

f(e) = Inf ¢(x)

(F22)
0<x<2
where
¢(x) = hlx,y,  (x)] (F23)
For 02 x<1, ymnx(x) = x, 40 that:
2 2
$(x) = S+ = (F24)

X

which achieves a minimum value of 2(1 + ¢) at x =1, For 1 <€ x< 2,

ymax(x) = 2 - x, 80 that:

- . w— = -
Yo - e e

e

— S —

——
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4 + £2[x2 - (2 - x)2] + 4ex
x2 + (2 - x)°

d(x) =

(2t e)x+l - €2 (F25)
x2 - 2x + 2

and

(=2 - if +2) o' (x) = (2 +e)(x2 - 2x +2) - 2(x - V)[(e? + e)x + 1 - €?]

= -(e?2 + e)x% + 2(e? - D)x + 2(1 + €) (F26)

Note that ¢'(x) has two real zeros given by:

2.1+ /2 -D2+ + )2
X)Xy = € 1+ V(e 1) 2¢(1 + ¢) (F27)
e2 + ¢

Clearly x, <0 and x, > 0, and ¢(x) changes sign at most one time (at
X;) in the interval [1,2]. Since, also, ¢(1) = 2¢e(e + 1) 2 0, ¢(x)
achieves its minimum at either x =1 or x = 2, Computing
$(1) = 2(e + 1)
(r28)
$(2) = (e +1)2
indicates that ¢(1) < ¢(2) when ¢ 2 1. In view of Equations (F20)

and (F22), the stability condition is written as follows:

4
(F29)

4)

Replacing € and € by their expressions in terms of €4 and €

e>/€ -1 for E

in

-1 for

(4]
tv
N
(W] ]
(3%

e given in
Equations (F4) and (F5), ylelds the desired equation (Equation (57)).

The remark that was made on Equations (D19) and (D23) in Chapter X
(Remark 1) also applied to Equation (F29). Also note that Equation (F29)

1s identical to Equation (F16) for a reason given in Chapter X (Remark 2).
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XIV, APPENDIX G: ON THE EIGENVALUES OF THE MATRIX T

The stability analysis of Section IIB was developed for th:. .ase 5 a
scalar, linear partial-differential equation with constant coeifficients. In
this way, the convective derivative operator C,, then (real) skew-s-rmmetric,
had purely imaginary eigenvalues, and this property was crucial to the
derivation. In Chapter IV it was shown that for the Euler equations, this

property is most likely to be true when the following matrix

Y a, -
81 0 83
a, 0 a,
I‘J - . (G1)
aJ_2 0 aJ
L a5, 0 J

has real eigenvalues. (In Equation (Gl), a, represents the value at
xj = (J-ax (3 =1, 2, ..., ) of any one of the four eigenvalues of
the Jacobian matrix A (for 2-D flows), and F; 1s subscripted to indicate
its dimension.) 1In chis appe?dix, the question of whether FJ has real
eigenvalues is investigated.

Three cases will be examined successively. They are: Case I —
a, a5, . . ., a, are all nonzero and of the same sign; Case II — there is
at least one true zero in the sequence aj at every alternation of sign; and

Case III — there is at least one value of | for which a < 0.

1%+
All three cases could be studied by analyzing the characteristic poly-
nomial of T,, that 1is

AJ(X) - dec(rJ - uJ) (G2)
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where IJ ig the JxJ identity matrix, but for Cases I and II simpler
arguments, which yield the desirad information, are preferred here.

For Case I, define a sequence 6§, by:

h|

§, =1

! (63)

6j+1 - 6j aj/aj+1 g=12,...,J3-1)

Clearly the sequence &, is well defined, and none of its elements is zero,

b
so that the diagonal matrix

V= Diag(Gj) (G4)

is nonsingular, and
vl = niag(sgl) (G5)

Then perform on the matrix FJ the following similarity transformation:

5 . g-l
FJ v FJV

- Diag(GEl)Trid(a

- -1 ‘ -1
Trid(6j aj_laj_l.o,sj aj+16j+1)

= Trid (J;j-—l_;j-’ 0, "ajaj“) (G6)

The matrix fJ is found real symmetric. As so, it is dlagonalized by an

O,aj+l)Diag(6 )

i-v 3

(G6)

orthogonal transformation { and has real eigenvalues, These eigenvalues

~

are also those of the matrix FJ which is similar to the matrix T This

3
cave 1s ﬁence favorable tn the stability of the implicit algorithm., (More
information about the eigenvalues of the matrix FJ, in Case I, is given in
the remarks at the end of this appendix.)

Using a continuity argument, Case II can be treated as an extension of

Case I. For this, an undetermined scalar parameter x 1is substituted in

place of every zero appearing in che original sequence aj, all the other
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elemente of this seyuencs Loing mairtained the same. 1n this way, the
matrix FJ tecomes a {'irst-degree polynomial of x whose eigenvalies for
x = 0 are required. The coefficients of the characteristic peclynomial
AJ(A) are simply some polynomials of x, that is, continuous functions of
X, 80 that:

a | = 1ma ) ©?)
J x=0 x>0 I

But for x # 0, Equations (GJ) through (G6) apply. Hence, for x = 0, the
matrix fJ (here defined by the last line in Equation (G6)) and the matrix
FJ may not be similar, but have the same characteristic polynomial, and
thus the same eigenvalues. To analyze these eigenvalues, suppose, for
example, that a, = 0 for fome r. In the neighborhood of this element,

the matrix f; has the following structure:

r-2%r-1
v 1’-.281"1 O l Q
) @) O
N
8182
1842 ©

Here, the matrix fJ is found block-diagonal. Ary of these blocks is a

real symmetric (tridiagonal) matrix (because consecutive nonzero elements

of the sequence aj are >f rhe same sign), and separated from the next one

by at least one row and one column of zeros. In view of this, let Qk be

SRS . SRR ;3.5 R

cu

L W Y,

ot i b it Rnn 25T a2

-t ks e ran. "
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the (orthogonal) matrix that diagonalizes the kth block, and Q be the
(orthogonal) block-diagonal matrix where the blocks are taken to be 2,
Iml’ 92, Imz, 93, etc., where I, 1is the mxm identity matrix and m
the number of zeros that separate posictive from negative elements of the
sequence aj at the kth alternation of sign. Clearly the matrix 2

diagonalizes the matrix I. whose eigenvalues e then found to be those

J
of the blocks in the "d agonal" of the matrix fj taken together, with

en plus the eigenvalue 0 added Imy; times. These eigenvalues, which are
also those of the matrix PJ, are all real as is desirable for stabilicy.

For Case III the characteristic polynomial AJ(A) of the matrix FJ

ne.1s to be analyzed. For this analysis, expand the determinant of the

matrix
po -
R |
Tae1 = Mgy = | BJ+1 (G8)
a; | -2
- o
along its last column to get:
g-1 " M :
AJ+1(A) = —AAJ(X) - ay,, det | a; |
| a;
and finally:
Bgpr ) = 28,00 = azap,85 , () ©9)

Frum this result, one can derive the following formulas:
- 2
Azm(x) Pm(k )

Bomir V) = A0 (P

(G10a)

(G10b)

B

[ "y
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where m 18 a natural integer, and P (x) and Qg (x) are polynomials or

degree m, with leading term xm. and which satisfy the following recurrence

formulas:

Pm+1(x) = xQq(x) - a2m+la2m+2Pm(x) (Glla)

Qupy X = Py (%) = 4y 080 43 ) (G11b)

To see this, use induction. Compute

-2 a
Az () =
82 "X
and
‘A 312 0

b3(0) = [a; -\ a,

0 a, -2

= A0\ - a,8,) - a,(-a 1)

= -A[A? - (a2, + a,a5)] (G13)
Clearly, if one defines:
A,(2) =1 1
Tolx) = Q (x) =1
b (G14)

Pl(x) =X - 31.2

Qy(x) = x ~ (aln2 + 32‘3)
/

Equation (G10) holds for m= 0 and m = 1, and Equation (Gl1) holds for
m = 0. Now suppose that Equation (G10) hclds for m = r for some r > 1,

and Fquation (Gll) holds for m = r - 1, Then applying Equation (G9) with

J = 2r+1 gives:

T e
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Boppa ) = =My () =y BBy )
- 22 2y o 2 G15)
M (%) -8, 8 Tr ) ¢

Hence, Equation (Gl0a) holds for m = r + 1 provided Pr+1(x) is delined
according to Equation (Glle) in which m i1s set equal to r. It also
appears from this equation, that since P, (x) and Qr(x) are polynomisls of
degree r, with leading term x5, Pr+1(x) i3 a polynomial of degree r + 1,
with leading term x'''. Similarly,

) M)

B3P = =28, 0 = 8% art3t o

- = 2
x[Pr+1(x ) +a (G16)

2rt2®2re 3% O]
Hence, Equation (G1l0b) holds for m = r + 1 provided Pr+1(x) is defined
according to Equation (G1l1lb) in which m is set equal to r. It also
appears from this equation that since Pr+1(x) and Qr(x) are polynomials of

™+l T

degrees r + 1 and r, respectively, with leading terms x and x ,

respectively, Qr+1(x) is a polynomial of degree r + 1 with leading term
xr+l. This shows that Equation (G10) holds for m = r + 1 and Equation (Gl1)
holds for m = r; hence, they both hold for every value of m. (Q.E.D.)

In view of Equation (G1l0), the following two conclusions can be drawn:
(1) 1f X 1is an eigenvalue of the matrix PJ, then -)A 18 also an eigen-
value; and (2) the eigenvalues of the matrix Iy are all real if and only
if the roots of Pp(x), in case J = 2m, or Qm(x), in case J = 2m + 1,
are all real positive.

The first result could be derived directly for the block matrix with

the same structure. The second one implies that a necessary condition for

the matrix FJ to have only real roots, is that the coefficients of Pm(x),

%
s
1
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in case J = 2m, ot Qm(x), in case J = 2m + 1, alternate in sign, or

v) v)

equivalently, that the coefficients of oy " or By 7, respectively, givea by

o™« ™2 ) /w1

(G17)

m-v

88 = 1™ 0w

where v=0,1, 2, . . ., m, be all positive. Recurrence formulas for
these coefficients can easily be obtained using Equation (G1l1). In particu-

mt+1
lar, setting x = 0 in this equation and muliiplying the result by (-1

glves:
©) _ ()
%l = Zomt1%2mt2%m (G18a)
(o) - (o) (o)
Bl ™ %mi) * Zomk2®ome3tn (G18b)

Similarly, differenciating Equation (G11) v times (v 2 1) with respect to
m+1-v/

x, setting x = 0, and multiplying the result by (-1) vl give:
) _ o(v-1) (v)
%p+1 = B * 2 e % om2®m (G19a)
QO BN AY) v)
Bot1 ™ mk1 ¥ 2omio®omtsP (G19b)

which in fact, in view of Equation (G18), can be applied with v = 0 if cone
defines B;-l) = 0, Equation (G19) should be completed by the following

"boundary" conditions:
a;m) - B;“) -1 (620)

which simply state that x™ is the leading term of both Pn(x) and Qm(x).
From this, it is easy to derive explicit formulas for aév) and B;v)

for v =0 and 1, now denoted more simply by a s Bm, a;, and Bé, respec-

tively. 1In particular, applying Equation (G18a) recursively gives:

] N " .
- ‘ ! , - ! " - y | 1 ) oy
P G | 4‘w'+~w¢»4r&wWﬂ=ﬂ“1Wwﬂ°ww*wmwPﬁﬂv“Wﬂﬁmutﬁmlw!ﬂiﬁlﬁlliﬂﬁ-'!ﬂtﬁ!‘!ﬂ'ﬁi&‘
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n~ %om1%m m-1

a o
® & m3?om-22m- 12 om -2

= 8182 . e e 82ma°

=aa, .. .8, (G21)

where Equation (G20) has been used with m = 0. Now, write Equation (G18b)
t with m=k-1(k=1, 2, . . ., m) and multiply the result by

82k+282k+3 RN e This gives

aa, . . . 8

172 2mt1

B

B kto®ok+3 ¢ 0 Zomk1Br T fokaktr ¢ ¢ 0 fomk PRy T

82kt

(G22)
where Equation (G21) has been used. (For k = m, the coefficient of B
in this equation is understood to Le one.) Then, write Equation (G22) for
k=1, 2, . . ., m, add the resulting relationships, use Equation (G20) with

m = 0, and simplifv the result to get:

- Z :__l__
Sm alaz S Py (G23)
k=0 2k+1

Similarly, write Equation (G19a) with m= k -1 (k= 1, 2, , . ., m) and

. - .
v = 1, and multiply the result by 1%kt ¢ ¢ fom to get:

¢ a.a a k
+ 172 2m 1
82k 854-1

' '
Gokt1%2k+2 © 0t Bam¥k T Fak-1%2k ' Zam¥k-)
=)

(G24)

Py N e vEw v
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where Equation (G23) has been used. Then, write Equation (G24) for

k=1,2, ..., m and add the resulting relationships to get:

m k
1 1
! = . . G25
On T 3% aZmZ a, L aZj—l (625)
k=1 §=1

where the fact that u; = 0 has been used. Finally, write Equation (G19b)

with m=2-1(2=1, 2, .. ., m)and v =1, and multiply the result by ,

304232043 * ¢ ¢ Bappy U0 86t
Y 1
' o '
304222043 * ¢ ¢ BBy T 80304 7 0 ¢ BomiPe
a.a a 1 k
N 12‘EI zm+1281 Eal (©26)
24-1
20+1 o 2k 4ot 2

where Equation (G25) has been used. Then write Equation (G26) for

£ =1, 2, ..., m and add the resulting relationships to get:

m 2 k
1 1l 1
B' =aa_ . .. a E E E (G27)
m 12 2m+1 8 a a
ooy T2vh = Tok 2§~1

i=1

where the fact that B8) = 0 has been used.
In view of the Equations (G21), (G23), (G25), and (G27), it appears
that in the event one or several alternations of sign occur in the sequence

aj, without separation of positive from negative values by at least one zero,

(v) ) d
m

it is most unlikely that the coefficients « or B, ° are all positive.

It suffices that only one of these coefficients be negative, for Pm(x) or

*

Qu(x) to have at least one root x* which is not real positive; then, the

matrix PJ has, in particular, the eigenvalues */x*; these are complex and
one of the two has a positive imaginary part; to that one corresponds an

eigenvalue of the matrix C, (s2e Equation (70)) with a negative real part
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which has a destabilizing effect, si) .. it acts like a negative smoothing.
More precisely, suppose for example, that J = 2m and that an < 0. This
occurs for example when a;, 8,, . . ., a,, are negative for some odd

value of r. Then let Tis Tps o o o be the real roots of Pm(x) and

zy, Z1, 27, Z2, - - » be its complex roots. The coefficient aj is
simply the product of these roots so that:
Qp =TTy - . . (zlil)(zziz) . .
= LTy - . lzllz |22|2 ... <0 (G28)

This shows that Pm(x) then has an odd number of real negative roots

ny, Ny, . . . to which correspond an odd number of pairs of purely imaginary
eigenvalues i/:ﬁ; and -iv-n,, i/:;;, and -iv-n,, . . . for the matrix rJ

and the real eigenvalues -/:;? and /:ET, -/:;;.and /:;Z; .+ . for the
matrix Cy. A similar situation occurs if J = 2m+ 1 and B, < 0.
Remark 1:

The fact that the eigenvalues of the matrix FJ are real for Cases I
and II can be derived from Equation (Gl0) and (Gll). In fact, this result was
originally obtained in this way. In that first analysis, the following
separation properties were found tc be true for Case I:

0 <X “y) <X <y, <. . <X <y

0 < x] <X <X) <X, <0 . <xh<xy< x;+l ! (G29)

?

LI v '
0 < y1 yl < y2 < y2 <. .. < Y < ym < ym+1

J
where {xj}, {yj} G=1,2,...,m, {xj} and {yj} 3-1,2,...,m+1)
are the roots of Pp(x), Qm(x), Pm+1(x) and Qm+](x), respectively. The
derivation of Equation (G29) is omitted here, since no particular applica-

tion of it was found.
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However, Equation (G29) shows that the eigenvalues of the matrix FJ

and thus of the matrix C, are simple, which implies that both mat -ices
are diagonalizable, an already known fact,
Remark 2:
Consider the case where the Euler 1mplicit method is applied to the
following one-dimensional (generalized) wave-equation:
u, + [a(x,t)u]x = 0 (G30)

n+l

If no smoothing is gcpplied, the solution-vector u at the n + 1st

time-step is given by:
u"ti . Lu" (G31)

where the following definitions are made:

! At nt1\!
L= (; + 9a Cx )

n+l n+l n+l
Cx Trid(}aj_l, 0, aj+1)

(G32)
n+l=

= 1DFJ D

D = Diag(ij) J
Suppose that a uniform bound on u" is required. For this, assume that

a(x,t) > 0 so that the results of Case I are applicable. In particular,

the transformations that diagoralize the matrices fn+l. Pn+l and Cn+1

J J X
L) are, respectively, 2, VQ, and X = DVQ where f 1s some orthogonal

(or

matrix, and the diagonal matrices V and D are given by Equations (C4)
and (G32), rcspectively. Consider first the case where a(x,t) does not
depend on time, so that L does not either. Then

Pu™ = 1 xAXT )01 = ExATx 100

< v AT 1% (G33)

1
e omrani

———————- Vbt
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where v = IX§ « X" is a condition number, and A 1is the diagonalized
form of the matrix L whose eigenvalues are given by:

1

j 1+ ivj

A (G34)

where Yj is an eigenvalue of the matrix FJ, that is, a real number, so
that lljl < 1. If the euclidean norm is selected, ¥Al < 1 so that
Tu™ < vi®l (G35)
which is the bound we were looking for. The value of v has no importance
in this case.
However, if now a(x,t) does depend on time, it appears inevitable to
use the following bound for L:
Ll = Ixax~ < 9 (G36)
where VU 1s an upper bound for v (which depends on n). This gives:
1™ < 5S™MG© (G37)
It hence appears of interest to evaluate V. For this, recall that Q 1is

orthogonal and D wunitary, so that:

IX0 = Ipvai = vl = Max]éjnl

J

. (638)
Ix-U = 10y~ 151 = N9~ 11 = I/Minléjnl
j
where euclidean norm has been used. This gives
v - Sup[Maxléjnl/Hin|6jnl]
n ] i

= Sup rMnxlajnllMin]ajnl (G39)

n‘V i b

where Equation (G3) has been used. Clearly, V > 1 unless a(x,t) only
depends oo time, and no uniform bound for u" can be derived from Equa-

tion (G37), which, to be rigorous, only reveals the failure of this attempt,

i — AT COMERENS |
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Howcver, f[or a practical problem, vne anticipates VvV to be very large if
the eigenvalues ajn are themselves subject to large variations. 'This

suggests that despite the fact thai Equation (G36) is a conservative esti-
mate, .he operator L of Equation (G31) is unlikely to be contracting as
one would wish in order to apply the contraction-mapping theorem cited in

Section IIA (i.e., contracting in the same norm sense for all n).

§ —
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